Scoping calculations on leakage of CO2 in geologic storage: The impact of overburden permeability, phase trapping, and dissolution

Author(s):  
Christine Doughty ◽  
Larry R. Myer
Keyword(s):  
2009 ◽  
Vol 3 (5) ◽  
pp. 586-599 ◽  
Author(s):  
Hajime Yamamoto ◽  
Keni Zhang ◽  
Kenzi Karasaki ◽  
Atsunao Marui ◽  
Hitoshi Uehara ◽  
...  

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jinyoung Park ◽  
Byoung-Young Choi ◽  
Jong Ok Jeong ◽  
Young Jae Shinn

The objective of this study is to evaluate the impact of SO2-CO2-water-rock interaction on the alteration of a reservoir rock having Ca-deficient conditions and little buffering capacity and its implication for porosity change near the injection well from a CO2 storage pilot site, Republic of Korea. For our study, three cases of experimental and geochemical modeling were carried out (pure CO2, 0.1% SO2 in CO2, and 1% SO2 in CO2, resp.) under realistic geologic storage conditions. Our results show that SO2 accelerated water-rock interactions by lowering the pH. In the 1% SO2 case, pH remained less than 2 during the experiments because of insufficient buffering capacity. Sulfate minerals were not precipitated because of an insufficient supply of Ca. Because the total volume of precipitated secondary minerals was less than that of the dissolved primary minerals, the porosity of rock increased in all cases. Chlorite largely contributed to the decrease in total rock volume although it formed only 4.8 wt.% of the rock. Our study shows that the coinjection of a certain amount of SO2 at CO2 storage reservoirs without carbonate and Ca-rich minerals can significantly increase the porosity by enhancing water-rock interactions. This procedure can be beneficial to CO2 injection under some conditions.


2014 ◽  
Author(s):  
S. C. Jones ◽  
L. E. Sobers

Abstract A combination of geologic carbon dioxide (CO2) sequestration and CO2 enhanced oil recovery (CO2EOR) can address the two of Trinidad and Tobago's energy sector challenges: falling oil production and increasing CO2 emissions. Geologic storage of CO2 in heavy oil reservoirs can increase oil production while injected CO2 is effectively sequestered. Our investigations are based on 225 ft (~69 m) of the unconsolidated Lower Forest sand, average porosity and permeability of 32% and 125 md, respectively, found within the Forest reserve field, Trinidad. The middle section of this sand package contains a 26 ft (8m) thick layer of shaly sand with average permeability 70 md and average porosity 28%. We used reservoir simulations to determine the impact of dip and reduced transmissibility on the performance of the water over gas injection strategy using CO2. From our results we conclude that the reduced vertical transmissibility and dip affects the formation of the oil bank, water underride and the rate of CO2 migration.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document