scholarly journals Transatlantic Saharan dust transport: Model simulation and results

Author(s):  
George Kallos ◽  
Anastasios Papadopoulos ◽  
Petros Katsafados ◽  
Slobodan Nickovic
2011 ◽  
Vol 11 (16) ◽  
pp. 8415-8431 ◽  
Author(s):  
E. Nowottnick ◽  
P. Colarco ◽  
A. da Silva ◽  
D. Hlavka ◽  
M. McGill

Abstract. Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modern Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. Compared to observations from MODIS and CALIOP, GEOS-5 reproduces the observed location and magnitude of observed dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and loss processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.


2010 ◽  
Vol 10 (5) ◽  
pp. 13287-13335 ◽  
Author(s):  
S. Gassó ◽  
A. Stein ◽  
F. Marino ◽  
E. Castellano ◽  
R. Udisti ◽  
...  

Abstract. The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (~54° S) and from the shores of the Colihue Huapi lake in Central Patagonia (~46° S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6–7 and 9–10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and $\\sim $800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at ~1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.


2010 ◽  
Vol 10 (17) ◽  
pp. 8287-8303 ◽  
Author(s):  
S. Gassó ◽  
A. Stein ◽  
F. Marino ◽  
E. Castellano ◽  
R. Udisti ◽  
...  

Abstract. The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (~54° S) and from the shores of the Colihue Huapi lake in Central Patagonia (~46° S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6–7 and 9–10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and ~800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at ~1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.


2011 ◽  
Vol 11 (3) ◽  
pp. 8337-8384 ◽  
Author(s):  
E. Nowottnick ◽  
P. Colarco ◽  
A. da Silva ◽  
D. Hlavka ◽  
M. McGill

Abstract. Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modern Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Liu ◽  
Yingjian Wang ◽  
Zhien Wang ◽  
Jun Zhou

The lack of information on the vertical distribution of dust, in turn, results in large uncertainties when attempting to evaluate the impacts of dust on climate processes. We analyzed over two years of LIDAR measurements from NASA’s CALIPSO and CloudSat satellites to document the vertical pathways of transatlantic transport of Saharan dust. Our analysis overcomes the limitations of quantitative dust detections with passive satellite measurements over land and low clouds and provides the fine vertical resolved structures. The results show the strong seasonal shift in dust source regions and transportation pathways due to the meteorological and thermodynamical conditions, which also control the dust vertical distribution as well as the depth of the dust layer. The dust layer top descending rates of 35 m/degree in summer, 25 m/degree in autumn and spring, and 10 m/degree in winter are found, respectively, while the dust is being transported across the Atlantic. Comparison with the model simulation highlights the potentials of dust observations using CALIPSO LIDAR. The observed seasonal dependence of these pathways gives new insights into the transport of the Saharan dust and provides important guidance for simulations of the production and transport of the global dust aerosol.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
György Varga ◽  
Pavla Dagsson-Walhauserová ◽  
Fruzsina Gresina ◽  
Agusta Helgadottir

AbstractMineral dust emissions from Saharan sources have an impact on the atmospheric environment and sedimentary units in distant regions. Here, we present the first systematic observations of long-range Saharan dust transport towards Iceland. Fifteen Saharan dust episodes were identified to have occurred between 2008 and 2020 based on aerosol optical depth data, backward trajectories and numerical models. Icelandic samples from the local dust sources were compared with deposited dust from two severe Saharan dust events in terms of their granulometric and mineralogical characteristics. The episodes were associated with enhanced meridional atmospheric flow patterns driven by unusual meandering jets. Strong winds were able to carry large Saharan quartz particles (> 100 µm) towards Iceland. Our results confirm the atmospheric pathways of Saharan dust towards the Arctic, and identify new northward meridional long-ranged transport of giant dust particles from the Sahara, including the first evidence of their deposition in Iceland as previously predicted by models.


1997 ◽  
Vol 28 ◽  
pp. S461-S462
Author(s):  
S. Külzer ◽  
R. Ries ◽  
L. Schütz

2017 ◽  
Vol 17 (7) ◽  
pp. 4817-4835 ◽  
Author(s):  
Jann Schrod ◽  
Daniel Weber ◽  
Jaqueline Drücke ◽  
Christos Keleshis ◽  
Michael Pikridas ◽  
...  

Abstract. During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from −20 to −30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L−1 were measured at −30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.


Sign in / Sign up

Export Citation Format

Share Document