scholarly journals Evaluation of SF6, C2Cl4, and CO to approximate fossil fuel CO2in the Northern Hemisphere using a chemistry transport model

2006 ◽  
Vol 111 (D16) ◽  
Author(s):  
L. Rivier ◽  
P. Ciais ◽  
D. A. Hauglustaine ◽  
P. Bakwin ◽  
P. Bousquet ◽  
...  
2007 ◽  
Vol 7 (24) ◽  
pp. 6119-6129 ◽  
Author(s):  
G. Dufour ◽  
S. Szopa ◽  
D. A. Hauglustaine ◽  
C. D. Boone ◽  
C. P. Rinsland ◽  
...  

Abstract. The distribution and budget of oxygenated organic compounds in the atmosphere and their impact on tropospheric chemistry are still poorly constrained. Near-global space-borne measurements of seasonally resolved upper tropospheric profiles of methanol (CH3OH) by the ACE Fourier transform spectrometer provide a unique opportunity to evaluate our understanding of this important oxygenated organic species. ACE-FTS observations from March 2004 to August 2005 period are presented. These observations reveal the pervasive imprint of surface sources on upper tropospheric methanol: mixing ratios observed in the mid and high latitudes of the Northern Hemisphere reflect the seasonal cycle of the biogenic emissions whereas the methanol cycle observed in the southern tropics is highly influenced by biomass burning emissions. The comparison with distributions simulated by the state-of-the-art global chemistry transport model, LMDz-INCA, suggests that: (i) the background methanol (high southern latitudes) is correctly represented by the model considering the measurement uncertainties; (ii) the current emissions from the continental biosphere are underestimated during spring and summer in the Northern Hemisphere leading to an underestimation of modelled upper tropospheric methanol; (iii) the seasonal variation of upper tropospheric methanol is shifted to the fall in the model suggesting either an insufficient destruction of CH3OH (due to too weak chemistry and/or deposition) in fall and winter months or an unfaithful representation of transport; (iv) the impact of tropical biomass burning emissions on upper tropospheric methanol is rather well reproduced by the model. This study illustrates the potential of these first global profile observations of oxygenated compounds in the upper troposphere to improve our understanding of their global distribution, fate and budget.


2012 ◽  
Vol 12 (8) ◽  
pp. 19371-19421 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The adoption of H2 internal combustion engines decreases tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and decreases those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States are expected to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector is adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic particularly in megacities with severe air-quality problems that are exacerbating.


Atmosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 251 ◽  
Author(s):  
Bertrand Bessagnet ◽  
Laurent Menut ◽  
Augustin Colette ◽  
Florian Couvidat ◽  
Mo Dan ◽  
...  

2013 ◽  
Vol 13 (13) ◽  
pp. 6117-6137 ◽  
Author(s):  
D. Wang ◽  
W. Jia ◽  
S. C. Olsen ◽  
D. J. Wuebbles ◽  
M. K. Dubey ◽  
...  

Abstract. Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario. The adoption of H2 internal combustion engines would decrease tropospheric burdens of ozone (1%), CO (18%), soot (17%), and sulfate aerosol (3%) in the A1FI scenario, and would decrease those of ozone (1%), CO (7%), soot (7%), and sulfate aerosol (3%) in the B1 scenario. In the future, people residing in the contiguous United States could expect to experience significantly fewer days of elevated levels of pollution if a H2 fuel cell road transportation sector were to be adopted. Health benefits of transitioning to a H2 economy for citizens in developing nations, like China and India, will be much more dramatic, particularly in megacities with severe, intensifying air-quality problems.


2012 ◽  
Vol 12 (8) ◽  
pp. 22023-22057
Author(s):  
J. Barré ◽  
L. El Amraoui ◽  
P. Ricaud ◽  
J.-L. Attié ◽  
W. A. Lahoz ◽  
...  

Abstract. The behavior of the Extra-tropical Transition Layer (ExTL) in the lowermost stratosphere is investigated using a Chemistry Transport Model (CTM) and analyses derived from assimilation of MLS (Microwave Limb Sounder) O3 and MOPITT (Measurements Of Pollution In The Troposphere) CO data. We use O3-CO correlations to quantify the effect of the assimilation on the height and depth of the ExTL. We firstly focus on a Stratosphere-Troposphere Exchange (STE) case study which occurred on 15 August 2007 over the British Isles (50° N, 10° W). We also extend the study at the global scale for the month of August 2007. For the STE case study, MOPITT CO analyses have the capability to sharpen the ExTL distribution whereas MLS O3 analyses provide a tropospheric expansion of the ExTL distribution with its maximum close to the thermal tropopause. When MLS O3 and MOPITT CO analyses are used together, the ExTL shows more realistic results and matches the thermal tropopause. At global scale, MOPITT CO analyses still show a sharper chemical transition between stratosphere and troposphere than the free model run. MLS O3 analyses move the ExTL toward the troposphere and broaden it. When MLS O3 analyses and MOPITT CO analyses are used together the ExTL matches the thermal tropopause poleward of 50°. This study shows that data assimilation can help overcome the shortcomings associated with a relatively coarse model resolution. The ExTL spread is larger in the Northern Hemisphere than the Southern Hemisphere suggesting that mixing processes are more active in the UTLS in the Northern Hemisphere than in the Southern Hemisphere. This work opens perspectives for studying the seasonal variations of the ExTL at extra-tropical latitudes.


2010 ◽  
Vol 10 (3) ◽  
pp. 1345-1359 ◽  
Author(s):  
G. G. Pfister ◽  
L. K. Emmons ◽  
D. P. Edwards ◽  
A. Arellano ◽  
T. Campos ◽  
...  

Abstract. We analyze the transport of pollution across the Pacific during the NASA INTEX-B (Intercontinental Chemical Transport Experiment Part B) campaign in spring 2006 and examine how this year compares to the time period for 2000 through 2006. In addition to aircraft measurements of carbon monoxide (CO) collected during INTEX-B, we include in this study multi-year satellite retrievals of CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument and simulations from the chemistry transport model MOZART-4. Model tracers are used to examine the contributions of different source regions and source types to pollution levels over the Pacific. Additional modeling studies are performed to separate the impacts of inter-annual variability in meteorology and dynamics from changes in source strength. Interannual variability in the tropospheric CO burden over the Pacific and the US as estimated from the MOPITT data range up to 7% and a somewhat smaller estimate (5%) is derived from the model. When keeping the emissions in the model constant between years, the year-to-year changes are reduced (2%), but show that in addition to changes in emissions, variable meteorological conditions also impact transpacific pollution transport. We estimate that about 1/3 of the variability in the tropospheric CO loading over the contiguous US is explained by changes in emissions and about 2/3 by changes in meteorology and transport. Biomass burning sources are found to be a larger driver for inter-annual variability in the CO loading compared to fossil and biofuel sources or photochemical CO production even though their absolute contributions are smaller. Source contribution analysis shows that the aircraft sampling during INTEX-B was fairly representative of the larger scale region, but with a slight bias towards higher influence from Asian contributions.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 192
Author(s):  
Rita Cesari ◽  
Tony Christian Landi ◽  
Massimo D’Isidoro ◽  
Mihaela Mircea ◽  
Felicita Russo ◽  
...  

This work presents the on-line coupled meteorology–chemistry transport model BOLCHEM, based on the hydrostatic meteorological BOLAM model, the gas chemistry module SAPRC90, and the aerosol dynamic module AERO3. It includes parameterizations to describe natural source emissions, dry and wet removal processes, as well as the transport and dispersion of air pollutants. The equations for different processes are solved on the same grid during the same integration step, by means of a time-split scheme. This paper describes the model and its performance at horizontal resolution of 0.2∘× 0.2∘ over Europe and 0.1∘× 0.1∘ in a nested configuration over Italy, for one year run (December 2009–November 2010). The model has been evaluated against the AIRBASE data of the European Environmental Agency. The basic statistics for higher resolution simulations of O3, NO2 and particulate matter concentrations (PM2.5 and PM10) have been compared with those from Copernicus Atmosphere Monitoring Service (CAMS) ensemble median. In summer, for O3 we found a correlation coefficient R of 0.72 and mean bias of 2.15 over European domain and a correlation coefficient R of 0.67 and mean bias of 2.36 over Italian domain. PM10 and PM2.5 are better reproduced in the winter, the latter with a correlation coefficient R of 0.66 and the mean bias MB of 0.35 over Italian domain.


Author(s):  
Ingmar J. Ackermann ◽  
Heinz Hass ◽  
A. Ebel ◽  
M. Memmesheimer ◽  
H. J. Jakobs

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2893 ◽  
Author(s):  
Willem W. Verstraeten ◽  
Klaas Folkert Boersma ◽  
John Douros ◽  
Jason E. Williams ◽  
Henk Eskes ◽  
...  

Top-down estimates of surface NOX emissions were derived for 23 European cities based on the downwind plume decay of tropospheric nitrogen dioxide (NO2) columns from the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) chemistry transport model (CTM) and from Ozone Monitoring Instrument (OMI) satellite retrievals, averaged for the summertime period (April–September) during 2013. Here we show that the top-down NOX emissions derived from LOTOS-EUROS for European urban areas agree well with the bottom-up NOX emissions from the MACC-III inventory data (R2 = 0.88) driving the CTM demonstrating the potential of this method. OMI top-down NOX emissions over the 23 European cities are generally lower compared with the MACC-III emissions and their correlation is slightly lower (R2 = 0.79). The uncertainty on the derived NO2 lifetimes and NOX emissions are on average ~55% for OMI and ~63% for LOTOS-EUROS data. The downwind NO2 plume method applied on both LOTOS-EUROS and OMI tropospheric NO2 columns allows to estimate NOX emissions from urban areas, demonstrating that this is a useful method for real-time updates of urban NOX emissions with reasonable accuracy.


2014 ◽  
Vol 7 (11) ◽  
pp. 3783-3799 ◽  
Author(s):  
A. T. J. de Laat ◽  
I. Aben ◽  
M. Deeter ◽  
P. Nédélec ◽  
H. Eskes ◽  
...  

Abstract. Validation results from a comparison between Measurement Of Pollution In The Troposphere (MOPITT) V5 Near InfraRed (NIR) carbon monoxide (CO) total column measurements and Measurement of Ozone and Water Vapour on Airbus in-service Aircraft (MOZAIC)/In-Service Aircraft for a Global Observing System (IAGOS) aircraft measurements are presented. A good agreement is found between MOPITT and MOZAIC/IAGOS measurements, consistent with results from earlier studies using different validation data and despite large variability in MOPITT CO total columns along the spatial footprint of the MOZAIC/IAGOS measurements. Validation results improve when taking the large spatial footprint of the MOZAIC/IAGOS data into account. No statistically significant drift was detected in the validation results over the period 2002–2010 at global, continental and local (airport) scales. Furthermore, for those situations where MOZAIC/IAGOS measurements differed from the MOPITT a priori, the MOPITT measurements clearly outperformed the MOPITT a priori data, indicating that MOPITT NIR retrievals add value to the MOPITT a priori. Results from a high spatial resolution simulation of the chemistry-transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) showed that the most likely explanation for the large MOPITT variability along the MOZAIC-IAGOS profile flight path is related to spatio-temporal CO variability, which should be kept in mind when using MOZAIC/IAGOS profile measurements for validating satellite nadir observations.


Sign in / Sign up

Export Citation Format

Share Document