scholarly journals Volcanic activity influenced by tectonic earthquakes: Static and dynamic stress triggering at Mt. Merapi

2007 ◽  
Vol 34 (5) ◽  
Author(s):  
T. R. Walter ◽  
R. Wang ◽  
M. Zimmer ◽  
H. Grosser ◽  
B. Lühr ◽  
...  
Author(s):  
Bo Jia ◽  
Han Yue ◽  
Muzli Muzli

Abstract Dynamic earthquake triggering is a widely accepted mechanism of earthquake interaction, which plays a vital role in seismic hazard estimation, although its efficacy at regional distances is under debate. The 2012 Mw 7.2 Indian Ocean event is one of the first reported events to produce dynamic stress triggering at regional distances using backprojection (BP) techniques. Alternatively, the coherent radiators in BP images can be interpreted as localized water reverberation phases. We present further evidence against near-trench triggering during this event. We collected 24 hr seismic recordings of two nearby stations located near the trench. We adopted a waveform denoising algorithm and detected 125 aftershocks using two regional seismic stations with a minimum magnitude of ML∼2.7 and completeness magnitude of ML∼3.6, whereas none of these aftershocks occurred near the trench. The absence of immediate (within one day) aftershocks near the trench suggest the absence of dynamic triggering during the offshore mainshock.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gino González ◽  
Eisuke Fujita ◽  
Bunichiro Shibazaki ◽  
Takumi Hayashida ◽  
Giovanni Chiodini ◽  
...  

AbstractUnderstanding the relationship cause/effect between tectonic earthquakes and volcanic eruptions is a striking topic in Earth Sciences. Volcanoes erupt with variable reaction times as a consequence of the impact of seismic waves (i.e. dynamic stress) and changes in the stress field (i.e. static stress). In 2012, three large (Mw ≥ 7.3) subduction earthquakes struck Central America within a period of 10 weeks; subsequently, some volcanoes in the region erupted a few days after, while others took months or even years to erupt. Here, we show that these three earthquakes contributed to the increase in the number of volcanic eruptions during the 7 years that followed these seismic events. We found that only those volcanoes that were already in a critical state of unrest eventually erupted, which indicates that the earthquakes only prompted the eruptions. Therefore, we recommend the permanent monitoring of active volcanoes to reveal which are more susceptible to culminate into eruption in the aftermath of the next large-magnitude earthquake hits a region.


2012 ◽  
Vol 7 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Masato Iguchi ◽  
◽  
Surono ◽  
Takeshi Nishimura ◽  
Muhamad Hendrasto ◽  
...  

We report methods, based on geophysical observations and geological surveys, for the prediction of eruptions and the evaluation of the activity of 4 volcanoes in Indonesia. These are Semeru, Guntur, Kelud and Sinabung volcanoes. Minor increases in tilt were detected by borehole tiltmeters prior to eruptions at the Semeru volcano depending on the seismic amplitude of explosion earthquakes. The results show the possibility of prediction of the type and magnitude of eruption and the effectiveness of observation with a high signalto-noise ratio. The establishment of background data is important for evaluating volcanic activity in longterm prediction. Typical distributions of volcanic and local tectonic earthquakes were obtained around the Guntur volcano, where geodetic monitoring by continuous GPS observation is valuable. The cumulative volume of eruptive products is valuable for evaluating the potential for future eruption. The eruptive rate of the Kelud volcano is ca 2×106m3/y (dense rock equivalent), but the volume of the 2007 eruption was only 2×107m3, suggesting a still high potential for eruption. Based on geological surveys and dating, an eruption scenario is proposed for the activity of Mt. Sinabung, where phreatic eruptions occurred in 2010 after a historically long dormancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gilles Seropian ◽  
Ben M. Kennedy ◽  
Thomas R. Walter ◽  
Mie Ichihara ◽  
Arthur D. Jolly

AbstractIt is generally accepted that tectonic earthquakes may trigger volcanic activity, although the underlying mechanisms are poorly constrained. Here, we review current knowledge, and introduce a novel framework to help characterize earthquake-triggering processes. This framework outlines three parameters observable at volcanoes, namely magma viscosity, open- or closed-system degassing and the presence or absence of an active hydrothermal system. Our classification illustrates that most types of volcanoes may be seismically-triggered, though require different combinations of volcanic and seismic conditions, and triggering is unlikely unless the system is primed for eruption. Seismically-triggered unrest is more common, and particularly associated with hydrothermal systems.


2012 ◽  
Vol 60 (3) ◽  
pp. 664-681 ◽  
Author(s):  
Marta Tárraga ◽  
Servando De La Cruz-Reyna ◽  
Ana T. Mendoza-Rosas ◽  
Roberto Carniel ◽  
Alicia Martínez-Bringas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document