scholarly journals Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model

2006 ◽  
Vol 111 (D20) ◽  
Author(s):  
Wenge Ni-Meister ◽  
Paul R. Houser ◽  
Jeffrey P. Walker
2021 ◽  
Author(s):  
Samuel Scherrer ◽  
Wolfgang Preimesberger ◽  
Monika Tercjak ◽  
Zoltan Bakcsa ◽  
Alexander Boresch ◽  
...  

<p>To validate satellite soil moisture products and compare their quality with other products, standardized, fully traceable validation methods are required. The QA4SM (Quality Assurance for Soil Moisture; ) free online validation tool provides an easy-to-use implementation of community best practices and requirements set by the Global Climate Observing System and the Committee on Earth Observation Satellites. It sets the basis for a community wide standard for validation studies.</p><p>QA4SM can be used to preprocess, intercompare, store, and visualise validation results. It uses state-of-the-art open-access soil moisture data records such as the European Space Agency’s Climate Change Initiative (ESA CCI) and the Copernicus Climate Change Services (C3S) soil moisture datasets, as well as single-sensor products, e.g. H-SAF Metop-A/B ASCAT surface soil moisture, SMOS-IC, and SMAP L3 soil moisture. Non-satellite data include in-situ data from the International Soil Moisture Network (ISMN: ), as well as land surface model or reanalysis products, e.g. ERA5 soil moisture.</p><p>Users can interactively choose temporal or spatial subsets of the data and apply filters on quality flags. Additionally, validation of anomalies and application of different scaling methods are possible. The tool provides traditional validation metrics for dataset pairs (e.g. correlation, RMSD) as well as triple collocation metrics for dataset triples. All results can be visualised on the webpage, downloaded as figures, or downloaded in NetCDF format for further use. Archiving and publishing features allow users to easily store and share validation results. Published validation results can be cited in reports and publications via DOIs.</p><p>The new version of the service provides support for high-resolution soil moisture products (from Sentinel-1), additional datasets, and improved usability.</p><p>We present an overview and examples of the online tool, new features, and give an outlook on future developments.</p><p><em>Acknowledgements: This work was supported by the QA4SM & QA4SM-HR projects, funded by the Austrian Space Applications Programme (FFG).</em></p>


2008 ◽  
Vol 9 (1) ◽  
pp. 116-131 ◽  
Author(s):  
Bart van den Hurk ◽  
Janneke Ettema ◽  
Pedro Viterbo

Abstract This study aims at stimulating the development of soil moisture data assimilation systems in a direction where they can provide both the necessary control of slow drift in operational NWP applications and support the physical insight in the performance of the land surface component. It addresses four topics concerning the systematic nature of soil moisture data assimilation experiments over Europe during the growing season of 2000 involving the European Centre for Medium-Range Weather Forecasts (ECMWF) model infrastructure. In the first topic the effect of the (spinup related) bias in 40-yr ECMWF Re-Analysis (ERA-40) precipitation on the data assimilation is analyzed. From results averaged over 36 European locations, it appears that about half of the soil moisture increments in the 2000 growing season are attributable to the precipitation bias. A second topic considers a new soil moisture data assimilation system, demonstrated in a coupled single-column model (SCM) setup, where precipitation and radiation are derived from observations instead of from atmospheric model fields. For many of the considered locations in this new system, the accumulated soil moisture increments still exceed the interannual variability estimated from a multiyear offline land surface model run. A third topic examines the soil water budget in response to these systematic increments. For a number of Mediterranean locations the increments successfully increase the surface evaporation, as is expected from the fact that atmospheric moisture deficit information is the key driver of soil moisture adjustment. In many other locations, however, evaporation is constrained by the experimental SCM setup and is hardly affected by the data assimilation. Instead, a major portion of the increments eventually leave the soil as runoff. In the fourth topic observed evaporation is used to evaluate the impact of the data assimilation on the forecast quality. In most cases, the difference between the control and data assimilation runs is considerably smaller than the (positive) difference between any of the simulations and the observations.


2019 ◽  
Vol 20 (5) ◽  
pp. 793-819 ◽  
Author(s):  
Joseph A. Santanello Jr. ◽  
Patricia Lawston ◽  
Sujay Kumar ◽  
Eli Dennis

Abstract The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.


2018 ◽  
Vol 15 (4) ◽  
pp. 498-502 ◽  
Author(s):  
Clay B. Blankenship ◽  
Jonathan L. Case ◽  
William L. Crosson ◽  
Bradley T. Zavodsky

2017 ◽  
Vol 21 (6) ◽  
pp. 2843-2861 ◽  
Author(s):  
Joost Iwema ◽  
Rafael Rosolem ◽  
Mostaquimur Rahman ◽  
Eleanor Blyth ◽  
Thorsten Wagener

Abstract. At very high resolution scale (i.e. grid cells of 1 km2), land surface model parameters can be calibrated with eddy-covariance flux data and point-scale soil moisture data. However, measurement scales of eddy-covariance and point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-Ray Neutron Sensors (CRNSs) made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land Environment Simulator (JULES) were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data separately. We calibrated the model for 12 sites in the USA representing a range of climatic, soil, and vegetation conditions. The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparison to eddy-covariance flux data and to JULES simulations with default parameter values. Calibrations against the two soil moisture products alone did show an advantage for the cosmic-ray technique. However, further analyses of two-objective calibrations with soil moisture and latent heat flux showed no substantial differences between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied by soil moisture spatio-temporal stability, and data quality issues.


2005 ◽  
Vol 6 (5) ◽  
pp. 656-669 ◽  
Author(s):  
Sarith P. P. Mahanama ◽  
Randal D. Koster

Abstract Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typically biased relative to observations, the simulated evaporative regime of a region may be biased, with consequent negative effects on the AGCM’s ability to translate an initialized soil moisture anomaly into an improved seasonal prediction. These potential problems are investigated through extensive offline analyses with the Mosaic land surface model (LSM). The LSM was first forced globally with a 15-yr observation-based dataset. The simulation was then repeated after imposing a representative set of GCM climate biases onto the forcings—the observational forcings were scaled so that their mean seasonal cycles matched those simulated by the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1; NASA Global Modeling and Assimilation Office) AGCM over the same period. The AGCM’s climate biases do indeed lead to significant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory time scales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should contribute to overestimated feedback in certain parts of North America—parts already identified in previous studies as having excessive feedback. The present study thus supports the notion that the reduction of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into seasonal prediction skill.


Sign in / Sign up

Export Citation Format

Share Document