Pure water vapor continuum measurements between 3100 and 4400 cm−1: Evidence for water dimer absorption in near atmospheric conditions

2007 ◽  
Vol 34 (12) ◽  
Author(s):  
D. J. Paynter ◽  
I. V. Ptashnik ◽  
K. P. Shine ◽  
K. M. Smith
2015 ◽  
Vol 112 (35) ◽  
pp. 10857-10862 ◽  
Author(s):  
Hao-Li Huang ◽  
Wen Chao ◽  
Jim Jr-Min Lin

Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O < 1.5 × 10−16 cm3s−1) to consume atmospheric (CH3)2COO significantly and (ii) (CH3)2COO reacts with SO2 at a near–gas-kinetic-limit rate (kSO2 = 1.3 × 10−10 cm3s−1). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere.


2021 ◽  
Author(s):  
Brian J. Carroll ◽  
Amin R. Nehrir ◽  
Susan Kooi ◽  
James Collins ◽  
Rory A. Barton-Grimley ◽  
...  

Abstract. Airborne differential absorption lidar (DIAL) offers a uniquely capable solution to the problem of measuring water vapor (WV) with high precision, accuracy, and resolution throughout the troposphere and lower stratosphere. The High Altitude Lidar Observatory (HALO) airborne WV DIAL was recently developed at NASA Langley Research Center and was first deployed in 2019. It uses four wavelengths at 935 nm to achieve sensitivity over a wide dynamic range, and simultaneously employs 1064 nm backscatter and 532 nm high spectral resolution lidar (HSRL) measurements for aerosol and cloud profiling. A key component of the WV retrieval framework is flexibly trading resolution for precision to achieve optimal data sets for scientific objectives across scales. A technique for retrieving WV in the lowest few hundred meters of the atmosphere using the strong surface return signal is also presented. The five maiden flights of the HALO WV DIAL spanned the tropics through midlatitudes with a wide range of atmospheric conditions, but opportunities for validation were sparse. Comparisons to dropsonde WV profiles were qualitatively in good agreement, though statistical analysis was impossible due to systematic error in the dropsonde measurements. Comparison of HALO to in situ WV measurements onboard the aircraft showed no substantial bias across three orders of magnitude, despite variance (R2 = 0.66) that may be largely attributed to spatiotemporal variability. Precipitable water vapor measurements from the spaceborne sounders AIRS and IASI compared very well to HALO with R2 > 0.96 over ocean and R2 = 0.86 over land.


2015 ◽  
Vol 8 (3) ◽  
pp. 1073-1087 ◽  
Author(s):  
S. M. Spuler ◽  
K. S. Repasky ◽  
B. Morley ◽  
D. Moen ◽  
M. Hayman ◽  
...  

Abstract. A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation – 50 days with a > 95% uptime – under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.


1972 ◽  
Vol 23 (2) ◽  
pp. 1004-1007
Author(s):  
V. K. Safonov ◽  
A. Z. Volynets
Keyword(s):  

2018 ◽  
Vol 20 (12) ◽  
pp. 8152-8165 ◽  
Author(s):  
Tianlei Zhang ◽  
Xinguang Lan ◽  
Zhangyu Qiao ◽  
Rui Wang ◽  
Xiaohu Yu ◽  
...  

Upon incorporation of the catalyst (H2O)n (n = 1–3) into the reaction HO2 + HO → H2O + 3O2, the catalytic effects of water, water dimer, and water trimer mainly arise from the contribution of a single molecule of water vapor.


2013 ◽  
Vol 14 (5) ◽  
pp. 1659-1671 ◽  
Author(s):  
R. Rosolem ◽  
W. J. Shuttleworth ◽  
M. Zreda ◽  
T. E. Franz ◽  
X. Zeng ◽  
...  

Abstract The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray probe signal and evaluates the fast neutron response in realistic atmospheric conditions using the neutron transport code Monte Carlo N-Particle eXtended (MCNPX). The vertical height of influence of the sensor in the atmosphere varies between 412 and 265 m in dry and wet atmospheres, respectively. Model results show that atmospheric water vapor near the surface affects the neutron intensity signal by up to 12%, corresponding to soil moisture differences on the order of 0.10 m3 m−3. A simple correction is defined to identify the true signal associated with integrated soil moisture that rescales the measured neutron intensity to that which would have been observed in the atmospheric conditions prevailing on the day of sensor calibration. Use of this approach is investigated with in situ observations at two sites characterized by strong seasonality in water vapor where standard meteorological measurements are readily available.


2014 ◽  
Vol 7 (11) ◽  
pp. 11265-11302 ◽  
Author(s):  
S. M. Spuler ◽  
K. S. Repasky ◽  
B. Morley ◽  
D. Moen ◽  
M. Hayman ◽  
...  

Abstract. A field deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes has been constructed and tested. Significant advances are discussed, including: a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with opto-mechanical and thermal stability, multi-stage optical filtering enabling measurement during daytime bright-cloud conditions, rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions, and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing and intercomparisons have been performed and are discussed. In general, the instrument has 150 m range resolution with 10 min temporal resolution – 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument was shown capable of autonomous long term field operation – 50 days with a >95% uptime – under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.


2021 ◽  
Vol 6 (4) ◽  
pp. 25-34
Author(s):  
I. P. Zavershinskii ◽  
D. P. Porfirev

A study of the discharge plasma with a vortex flow of an argon + water vapor mixture with aluminum particles in a tube of a plasma vortex reactor (PVR) was carried out. The parameters of the discharge, plasma, and working flow in the PVR have been measured. Spectral methods were used to estimate the electron temperature, rotational and vibrational temperatures of excited molecular complexes, the temperature of metal clusters, and the electron density of plasma. A kinetic scheme is proposed for calculating the operating modes in a reactor using a water vapor discharge with aluminum particles. Numerical simulation of a vortex flow of pure water vapor with aluminum particles in the presence of a heating source is carried out.


2019 ◽  
Vol 100 (8) ◽  
pp. 1499-1509 ◽  
Author(s):  
Jason M. Cordeira ◽  
Jonathan Stock ◽  
Michael D. Dettinger ◽  
Allison M. Young ◽  
Julie F. Kalansky ◽  
...  

AbstractWe compare a novel dataset of San Francisco Bay Area landslides from 1871 to 2012 to corresponding atmospheric conditions commonly associated with Pacific winter storms and landfalling atmospheric rivers (ARs). Landslides in the San Francisco Bay Area occur primarily during winter months, coinciding with enhanced integrated water vapor transport (IVT) magnitudes ≥250 kg m–1 s–1 at the coast 76% of the time and with landfalling ARs over the near-offshore northeast Pacific 82% of the time. Results illustrate that days, or the first in a series of days, with a landslide (i.e., landslide onset days) typically occur in association with NOAA Twentieth Century Reanalysis–derived IVT magnitudes ≥250 kg m–1 s–1 that persist for ∼20 h and temporal maxima in precipitation rates. Composite analyses of sea level pressure, integrated water vapor, and IVT during 3-month periods during September–May on landslide onset days further illustrate that these events coincide with regions of low pressure to the northwest of California and high pressure to the south, synoptic-scale flow conditions associated with strong onshore flow, and water vapor transports in the form of landfalling ARs.


Sign in / Sign up

Export Citation Format

Share Document