Water flux components and soil water-atmospheric controls in a temperate pine forest growing in a well-drained sandy soil

Author(s):  
Joshua D. McLaren ◽  
M. Altaf Arain ◽  
Myroslava Khomik ◽  
Matthias Peichl ◽  
Jason Brodeur
Keyword(s):  
2012 ◽  
Vol 8 (1) ◽  
pp. 37-48
Author(s):  
S. Chehaibi ◽  
K. Abrougui ◽  
F. Haouala

The effects of mechanical perforation densities by extracting soil cores through an aerator Vertidrain with a working width of 1.6 m and equipped with hollow tines spaced of 65 mm, were studied on a sandy soil of a grassy sward in the Golf Course El Kantaoui in Sousse (Tunisia). The mechanical aeration was performed at two densities: 250 and 350 holes/m2. The cone penetration resistance and soil water infiltration were measured. These parameters were performed at initial state before aeration (E0) and then on the 10th, 20th and 30th day after aeration. These results showed that perforation density of 350 holes/m2 had a positive effect on the soil by reducing its cone resistance to penetration compared to the initial state (Rp = 14.8 daN/cm2). At 5 cm depth the decrease in resistance to penetration was 34% and 43% on the 10th and 20th day after aeration, respectively. However, on the 30th day after aeration the soil resistance to penetration tended to grow and its value compared to the initial state decreased only by 21 and 26%, respectively, at 5 and 15 cm of depth only by 10% and 9% with 250 holes/m2 density. The soil water infiltration made a good improvement after aeration compared to the initial state. This parameter increased from 4.8 cm/h to 8.3, 10.9 and 13.1 cm/h with 250 holes/m2 density and to 10, 12.9 and 14.8 cm/h with 350 holes/m2 density on the 10th, 20th and 30th day following the aeration.


Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

1994 ◽  
Vol 40 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Shuichi Hasegawa ◽  
Seiko Osozawa ◽  
Hideto Ueno

2021 ◽  
Author(s):  
Ana M. C. Ilie ◽  
Tissa H. Illangasekare ◽  
Kenichi Soga ◽  
William R. Whalley

<p>Understanding the soil-gas migration in unsaturated soil is important in a number of problems that include carbon loading to the atmosphere from the bio-geochemical activity and leakage of gases from subsurface sources from carbon storage unconventional energy development. The soil water dynamics in the vadose zone control the soil-gas pathway development and, hence, the gas flux's spatial and temporal distribution at the soil surface. The spatial distribution of soil-water content depends on soil water characteristics. The dynamics are controlled by the water flux at the land surface and water table fluctuations. Physical properties of soil give a better understanding of the soil gas dynamics and migration from greater soil depths. The fundamental process of soil gas migration under dynamic water content was investigated in the laboratory using an intermediate-scale test system under controlled conditions that is not possible in the field. The experiments focus on observing the methane gas migration in relation to the physical properties of soil and the soil moisture patterns. A 2D soil tank with dimensions of 60 cm × 90 cm × 5.6 cm (height × length × width) was used.  The tank was heterogeneously packed with sandy soil along with a distributed network of soil moisture, temperature, and electrical conductivity sensors. The heterogeneous soil configuration was designed using nine uniform silica sands with the effective sieve numbers #16, #70, #8, #40/50, #110, #30/40, #50, and #20/30 (Accusands, Unimin Corp., Ottawa, MN), and a porosity ranging in values from 0.31 to 0.42. Four methane infrared gas sensors and a Flame Ionization detector (HFR400 Fast FID) were used for the soil gas sampling at different depths within the soil profiles and at the land surface.  A complex transient soil moisture distribution and soil gas migration patterns were observed in the 2D tank. These processes were successfully captured by the sensors. These preliminary experiments helped us to understand the mechanism of soil moisture sensor response and methane gas migration into a heterogeneous sandy soil with a view to developing a large-scale test in a 3D tank (4.87 m × 2.44 m × 0.40 m) and finally transition to field deployment.</p>


2017 ◽  
Vol 21 (4) ◽  
pp. 189-195 ◽  
Author(s):  
Beibei Zhou ◽  
Xiaopeng Chen

The poor water retention capacity of sandy soils commonly aggregate soil erosion and ecological environment on the Chinese Loess Plateau. Due to its strong capacity for absorption and large specific surface area, the use of nanocarbon made of coconut shell as a soil amendment that could improve water retention was investigated. Soil column experiments were conducted in which a layer of nanocarbon mixed well with the soil was formed at a depth of 20 cm below the soil surface. Four different nanocarbon contents by weight (0%, 0.1%, 0.5%, and 1%) and five thicknesses of the nanocarbon- soil mixture layer ranging from 1 to 5 cm were considered. Cumulative infiltration and soil water content distributions were determined when water was added to soil columns. Soil Water Characteristic Curves (SWCC) were obtained using the centrifuge method. The principal results showed that the infiltration rate and cumulative infiltration increased with the increases of nanocarbon contents, to the thicknesses of the nano carbon-soil mixture layer. Soil water contents that below the soil-nano carbon layer decreased sharply. Both the Brooks-Corey and van Genuchten models could describe well the SWCC of the disturbed sandy soil with various nano carbon contents. Both the saturated water content (θs), residual water content (θr) and empirical parameter (α) increased with increasing nano carbon content, while the pore-size distribution parameter (n) decreased. The available soil water contents were efficiently increased with the increase in nanocarbon contents.


Sugar Tech ◽  
2018 ◽  
Vol 21 (3) ◽  
pp. 444-450 ◽  
Author(s):  
Kenta Watanabe ◽  
Samran Saensupo ◽  
Yanischa Na-iam ◽  
Peeraya Klomsa-ard ◽  
Klanarong Sriroth

Author(s):  
Andres Tonisson

During the summers of 1997-98, in a pine-forested sloping watershed, soil water from calcareous and sandy soil horizons was collected on nine occasions. In total 8 lysimeters were used. The amount of water percolating through sandy test site was up to three times smaller than that through calcareous test site. The influence of soil cover on the percolating water is also significant. The sandy site is able to produce even more diluted water than that originally coming from precipitation. Concentrations of TOC are varying more than the conductivity values. The concentration of TOC on the calcareous site was 2... 2,5 times higher than that on the sandy site. The total emission of TOC from the transitional humus-rich test site could be higher by up to 20 times as compared with sandy site.


Sign in / Sign up

Export Citation Format

Share Document