scholarly journals Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation

2012 ◽  
Vol 117 (A5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xianzhe Jia ◽  
Kenneth C. Hansen ◽  
Tamas I. Gombosi ◽  
Margaret G. Kivelson ◽  
Gabor Tóth ◽  
...  

2008 ◽  
Vol 26 (11) ◽  
pp. 3411-3428 ◽  
Author(s):  
P. Daum ◽  
M. H. Denton ◽  
J. A. Wild ◽  
M. G. G. T. Taylor ◽  
J. Šafránková ◽  
...  

Abstract. Among the many challenges facing the space weather modelling community today, is the need for validation and verification methods of the numerical models available describing the complex nonlinear Sun-Earth system. Magnetohydrodynamic (MHD) models represent the latest numerical models of this environment and have the unique ability to span the enormous distances present in the magnetosphere, from several hundred kilometres to several thousand kilometres above the Earth's surface. This makes it especially difficult to develop verification and validation methods which posses the same range spans as the models. In this paper we present a first general large-scale comparison between four years (2001–2004) worth of in situ Cluster plasma observations and the corresponding simulated predictions from the coupled Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code. The comparison between the in situ measurements and the model predictions reveals that by systematically constraining the MHD model inflow boundary conditions a good correlation between the in situ observations and the modeled data can be found. These results have an implication for modelling studies addressing also smaller scale features of the magnetosphere. The global MHD simulation can therefore be used to place localised satellite and/or ground-based observations into a global context and fill the gaps left by measurements.



2003 ◽  
Vol 21 (3) ◽  
pp. 661-669 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley

Abstract. We examine the residual (measured minus internal) magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a). A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS), has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983), extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS), has a north-south extent of 6 RS, and carries a total current of 11.5 MA.Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres)







1998 ◽  
Vol 25 (14) ◽  
pp. 2537-2540 ◽  
Author(s):  
C. C. Goodrich ◽  
J. G. Lyon ◽  
M. Wiltberger ◽  
R. E. Lopez ◽  
K. Papadopoulos


2004 ◽  
Vol 32 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
M. Palmroth ◽  
H.E.J. Koskinen ◽  
T.I. Pulkkinen ◽  
P. Janhunen


2016 ◽  
Vol 826 (2) ◽  
pp. 138 ◽  
Author(s):  
Patrice Beaudoin ◽  
Corinne Simard ◽  
Jean-François Cossette ◽  
Paul Charbonneau


1998 ◽  
Vol 16 (12) ◽  
pp. 1557-1566 ◽  
Author(s):  
J. C. Kosik

Abstract. A quantitative model of the magnetospheric magnetic field is developed using poloidal vector fields. This formalism is applied to the ring current region, the distant field and the return currents. The tail model is similar to the unwarped model of Tsyganenko. Several sets of coefficients are obtained for different Kp through a fit of the NSSDC data base. Experimental ΔB contours and theoretical distributed currents contours are correctly described and are Kp-dependent. Field line topology problems and poor ring current description observed in models of similar complexity are avoided. Computer time has been kept reasonable and makes this model particularly adapted to intensive-type calculations.Key words. Magnetospheric physics (magnetospheric · configuration and dynamics).  



Sign in / Sign up

Export Citation Format

Share Document