scholarly journals Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer

2012 ◽  
Vol 117 (D19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yuzo Miyazaki ◽  
Jinsang Jung ◽  
Pingqing Fu ◽  
Yasuko Mizoguchi ◽  
Katsumi Yamanoi ◽  
...  
2011 ◽  
Vol 11 (11) ◽  
pp. 30773-30795
Author(s):  
Y. Miyazaki ◽  
P. Fu ◽  
K. Kawamura ◽  
Y. Mizoguchi ◽  
K. Yamanoi

Abstract. To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC) aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a~deciduous forest in Northern Japan during 2009–2010. Stable carbon isotopic ratios of WSOC (δ13CWSOC) in aerosols exhibited a distinct seasonal cycle, with lower values from June through September (−25.5 ± 0.5‰). This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF) analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs) dominated accounted for ~ 40% of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs) made similar contributions (~ 57%) to the WSOC near the canopy floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA) maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the canopy floor. Together with the similar vertical gradients found for WSOC and δ13CWSOCas well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of the WSOC within a~forest canopy at the study site.


2012 ◽  
Vol 12 (3) ◽  
pp. 1367-1376 ◽  
Author(s):  
Y. Miyazaki ◽  
P. Q. Fu ◽  
K. Kawamura ◽  
Y. Mizoguchi ◽  
K. Yamanoi

Abstract. To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC) aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ13CWSOC) in total suspended particulate matter (TSP) exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰). This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF) analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs) dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs) made similar contributions (~57 %) to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA) maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ13CWSOC as well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site.


2012 ◽  
Vol 12 (6) ◽  
pp. 14043-14087
Author(s):  
J. Jung ◽  
Y. Miyazaki ◽  
K. Kawamura

Abstract. To investigate new particle formation (NPF) events in urban and forest environments, number size distributions of ultrafine particles were measured at an urban site and a deciduous forest site in Sapporo, Northern Japan, during the summers of 2011 and 2010, respectively. The burst of nucleation mode particles at the urban site typically started in the morning (7:00–11:30 local time, LT) with simultaneous increases in SO2 and O3 concentrations and the UV index under clear (sunny) weather conditions. The growth rates of nucleated particles at the urban site ranged from 5.0 to 7.8 nm h−1 with an average of 6.3 ± 1.1 nm h−1. NPF events at the urban site were separated into events with or without subsequent particle growth after the burst of nucleation mode particles. This division was related to prevailing wind direction as the subsequent growth of freshly nucleated particles typically occurred when wind direction shifted to northwesterly (from residential and public park areas), whereas it did not occur under southeasterly winds (from the downtown area). During the periods with NPF events, elevated concentrations of non-methane hydrocarbons (NMHC) were obtained under conditions of northwesterly winds when compared to southeasterly winds, whereas no difference in SO2 levels was recorded. These results suggest that variations in NMHC concentration may play an important role in the growth of freshly nucleated particles at the urban site. The burst of nucleation mode particles at the forest site typically started around noon (10:30–14:30 LT), which was 3–4 h later than that at the urban site. Interestingly, at the forest site the burst of nucleation mode particles usually started when air masses originating from urban Sapporo arrived at the forest site. The present study indicates that the inflow of these urban air masses acted as a trigger for the initiation of the burst of nucleation mode particles in the deciduous forest.


2013 ◽  
Vol 13 (1) ◽  
pp. 51-68 ◽  
Author(s):  
J. Jung ◽  
Y. Miyazaki ◽  
K. Kawamura

Abstract. To investigate new particle formation (NPF) events in urban and forest environments, number size distributions of ultrafine particles were measured at an urban site and a deciduous forest site in Sapporo, Northern Japan, during the summers of 2011 and 2010, respectively. The burst of nucleation mode particles at the urban site typically started in the morning (07:00–11:30 local time, LT) with simultaneous increases in SO2 and O3 concentrations and the UV index under clear (sunny) weather conditions. The growth rates of nucleated particles at the urban site ranged from 5.0 to 7.8 nm h−1 with an average of 6.3 ± 1.1 nm h−1. NPF events at the urban site were separated into events with or without subsequent particle growth after the burst of nucleation mode particles. This division was found to relate to prevailing wind direction because the subsequent growth of freshly nucleated particles typically occurred when wind direction shifted to northwesterly (from residential and public park areas), whereas it did not occur under southeasterly winds (from the downtown area). During the periods with NPF events, elevated concentrations of non-methane hydrocarbons (NMHC) were obtained under conditions of northwesterly winds when compared to southeasterly winds, whereas no difference in SO2 levels was recorded. These results suggest that variations in NMHC concentration may play an important role in the growth of freshly nucleated particles at the urban site. The burst of nucleation mode particles at the forest site typically started around noon (10:30–14:30 LT), which was 3–4 h later than that at the urban site. Interestingly, at the forest site the burst of nucleation mode particles usually started when air masses originating from urban Sapporo arrived at the forest site. The present study indicates that the inflow of these urban air masses acted as a trigger for the initiation of the burst of nucleation mode particles in the deciduous forest.


2005 ◽  
Vol 94 (2) ◽  
pp. 244-255 ◽  
Author(s):  
Quan Wang ◽  
Samuel Adiku ◽  
John Tenhunen ◽  
André Granier

2021 ◽  
Vol 11 (6) ◽  
pp. 2539
Author(s):  
Regina M. B. O. Duarte ◽  
João T. V. Matos ◽  
Armando C. Duarte

Water-soluble organic aerosols (OA) are an important component of air particles and one of the key drivers that impact both climate and human health. Understanding the processes involving water-soluble OA depends on how well the chemical composition of this aerosol component is decoded. Yet, obtaining detailed information faces several challenges, including water-soluble OA collection, extraction, and chemical complexity. This review highlights the multidimensional non-targeted analytical strategies that have been developed and employed for providing new insights into the structural and molecular features of water-soluble organic components present in air particles. First, the most prominent high-resolution mass spectrometric methods for near real-time measurements of water-soluble OA and their limitations are discussed. Afterward, a special emphasis is given to the degree of compositional information provided by offline multidimensional analytical techniques, namely excitation–emission (EEM) fluorescence spectroscopy, high-resolution mass spectrometry and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and their hyphenation with chromatographic systems. The major challenges ahead on the application of these multidimensional analytical strategies for OA research are also addressed so that they can be used advantageously in future studies.


2015 ◽  
Vol 73 (2) ◽  
pp. 181-205 ◽  
Author(s):  
Prashant Hegde ◽  
Kimitaka Kawamura ◽  
I. A. Girach ◽  
Prabha R. Nair

2020 ◽  
Vol 230 ◽  
pp. 117503
Author(s):  
Regina M.B.O. Duarte ◽  
Pu Duan ◽  
Jingdong Mao ◽  
Wenying Chu ◽  
Armando C. Duarte ◽  
...  

2016 ◽  
Author(s):  
Yuzo Miyazaki ◽  
Sean Coburn ◽  
Kaori Ono ◽  
David T. Ho ◽  
R. Bradley Pierce ◽  
...  

Abstract. Stable carbon isotopic compositions of water-soluble organic carbon (WSOC) and organic molecular markers were measured to investigate the relative contributions of the sea-surface sources to the water-soluble fraction of submicron organic aerosols collected over the eastern equatorial Pacific during the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO)/KA-12-01 cruise. On average, the water-soluble organic fraction of the total carbon (TC) mass in submicron aerosols was ~ 30–35 % in the open oceans, whereas it was ~ 60 % in the coastal oceans. The average stable carbon isotope ratio of WSOC (δ13CWSOC) was −19.8 ± 2.0 ‰, which was systematically higher than that of TC (δ13CTC) (−21.8 ± 1.4 ‰). We found that in both coastal and open oceans, the δ13CWSOC was close to the typical values of δ13C for dissolved organic carbon (DOC), ranging from −22 ‰ to −20 ‰ in surface seawater of tropical Pacific oceans. This suggests an enrichment of marine biological products in WSOC aerosols in the study region regardless of the oceanic area. In particular, enhanced levels of WSOC and biogenic organic marker compounds together with high values of WSOC/TC (~ 60 %) and δ13CWSOC were observed over upwelling areas and phytoplankton blooms, which was attributed to planktonic tissues being more enriched in δ13C. The δ13C analysis estimated that on average, marine sources contribute ~ 90 ± 25 % of the aerosol carbon, indicating the predominance of marine-derived carbon in the submicron WSOC. This conclusion is supported by Lagrangian trajectory analysis, which suggests that the majority of the sampling points on the ship had been exposed to marine boundary layer air for more than 80 % of the time during the previous 7 days. The combined analysis of the δ13C and monosaccharides, such as glucose and fructose, indicated that DOC concentration was the major factor controlling the concentration levels of the submicron WSOC regardless of the oceanic areas over the study region.


2018 ◽  
Author(s):  
Wenqi Zhang ◽  
Yan-Lin Zhang ◽  
Fang Cao ◽  
Yankun Xiang ◽  
Yuanyuan Zhang ◽  
...  

Abstract. Water soluble organic carbon (WSOC) is a significant fraction of organic carbon (OC) in atmospheric aerosols. WSOC is of great interest due to its significant effects on atmospheric chemistry, the Earth’s climate and human health. Stable carbon isotope (δ13C) can be used to track the potential sources and investigate atmospheric processes of organic aerosols. In this study, a method of simultaneously measuring the mass concentration and δ13C values of WSOC from aerosol samples is established by coupling the Gas Bench II preparation device with isotopic ratio mass spectrometry. The precision and accuracy of isotope determination is better than 0.17 ‰ and 0.5 ‰, respectively, for samples containing carbon larger than 5 μg. This method is then applied for the high time-resolution aerosol samples during a severe wintertime haze period in Nanjing, East China. WSOC varies between 3–32 μg m−3, whereas δ13C-WSOC ranges from −26.24 ‰ to −23.35 ‰. Three different episodes (e.g., namely the Episode 1, the Episode 2, the Episode 3) are identified in the sampling period, showing a different tendency of δ13C-WSOC with the accumulation process of WSOC aerosols. The increases in both the WSOC mass concentrations and the δ13C-WSOC values in the Episode 1 indicate that WSOC is subject to a substantial photochemical aging during the air mass transport. In the Episode 2, the decline of the δ13C-WSOC is accompanied by the increase in the WSOC mass concentrations, which is associated with regional-transported biomass burning emissions. In the Episode 3, heavier isotope (13C) is exclusively enriched in total carbon (TC) compares to WSOC aerosols. This suggests that water-insoluble carbon may contain 13C-enriched components such as dust carbonate which is supported by the enhanced Ca2+ concentrations and air mass trajectories analysis. The present study provides a novel method to determine stable carbon isotope composition of WSOC and it offers a great potential to better understand the source emission, the atmospheric aging and the secondary production of water soluble organic aerosols.


Sign in / Sign up

Export Citation Format

Share Document