scholarly journals Development and Assessment of the Atmospheric Pressure Vertical Correction Model With ERA‐Interim and Radiosonde Data

2018 ◽  
Vol 5 (11) ◽  
pp. 777-789 ◽  
Author(s):  
Yibin Yao ◽  
Zhangyu Sun ◽  
Chaoqian Xu ◽  
Liang Zhang ◽  
Yangyang Wan
2012 ◽  
Vol 166-169 ◽  
pp. 960-963
Author(s):  
Chun Lai Dong

This paper briefly describes the troposphere delay correction model, It developed a software using the real-time calculation of the troposphere delay corrections modified value. Based on the concept of sensitivity, Respectively on temperature, atmospheric pressure and high Angle variation, drawing analyzes correction effect of three correct model (Hopfield, Saastamoinen and Black), making a reasonable choice model of beneficial conclusion.


2019 ◽  
Vol 11 (2) ◽  
pp. 603-627 ◽  
Author(s):  
António P. Ferreira ◽  
Raquel Nieto ◽  
Luis Gimeno

Abstract. Radiosonde measurements from the 1930s to present give unique information on the distribution and variability of water vapor in the troposphere. The sounding data from the Integrated Global Radiosonde Archive (IGRA) Version 2 are examined here until the end of 2016, aiming to describe the completeness of humidity observations (simultaneous measurements of pressure, temperature, and humidity) in different times and locations. Upon finding the stations with a non-negligible number of radiosonde observations in their period of record, thus removing pilot-balloon stations from IGRA, the selected set (designated IGRA-RS) comprises 1723 stations, including 1300 WMO stations, of which 178 belong to the current GCOS Upper-Air Network (GUAN) and 16 to the GCOS Reference Upper-Air Network (GRUAN). Completeness of humidity observations for a radiosonde station and a full year is herein defined by five basic parameters: number of humidity soundings, fraction of days with humidity data, average vertical resolution, average atmospheric pressure and altitude at the highest measuring level, and maximum number of consecutive days without data. The observations eligible for calculating precipitable water vapor – i.e., having adequate vertical sampling between the surface and 500 hPa – are particularly studied. The present study presents the global coverage of humidity data and an overall picture of the temporal and vertical completeness parameters over time. This overview indicates that the number of radiosonde stations potentially useful for climate studies involving humidity depends not only on their record length, but also on the continuity, regularity, and vertical sampling of the humidity time series. Additionally, a dataset based on IGRA is described with the purpose of helping climate and environmental scientists to select radiosonde data according to various completeness criteria – even if differences in instrumentation and observing practices require extra attention. This dataset consists of two main subsets: (1)  statistical metadata for each IGRA-RS station and year within the period of record; and (2) metadata for individual observations from each station. These are complemented by (3) a list of the stations represented in the whole dataset, along with the observing periods for humidity (relative humidity or dew-point depression) and the corresponding counts of observations. The dataset is to be updated on a 2-year basis, starting in 2019, and is available at https://doi.org/10.5281/zenodo.1332686.


2021 ◽  
Author(s):  
Christoph von Rohden ◽  
Michael Sommer ◽  
Tatjana Naebert ◽  
Vasyl Motuz ◽  
Ruud J. Dirksen

Abstract. The paper presents the Simulator for Investigation of Solar Temperature Error of Radiosondes (SISTER), a setup that was developed to quantify the solar heating of the temperature sensor of radiosondes under laboratory conditions by recreating as closely as possible the atmospheric and illumination conditions that are encountered during a daytime radiosounding ascent. SISTER controls the pressure (3 hPa to 1020 hPa) and ventilation speed of the air inside the windtunnel-like setup to simulate the conditions between the surface and 35 km altitude, to determine the dependence of the radiation temperature error on the irradiance and the convective cooling. The radiosonde is mounted inside a quartz tube, while the complete sensor boom is illuminated by an external light source to include the conductive heat transfer between sensor and boom. A special feature of SISTER is that the radiosonde is rotated around its axis to imitate the spinning of the radiosonde in flight. The characterisation of the radiation temperature error is performed for various pressures, ventilation speeds and illumination angles, yielding a 2D-parameterisation of the radiation error for each illumination angle, with an uncertainty smaller than 0.2 K (k = 2) for typical ascend speeds. This parameterisation is applied in the GRUAN processing for radiosonde data, which relies on the extensive characterisation of the sensor properties to produce a traceable reference data product which is free of manufacturer dependent effects. The GRUAN radiation correction model combines the laboratory characterisation with model calculations of the actual radiation field during the sounding to estimate the correction profile. In the second part of this paper it is described how this procedure was applied in the development of the GRUAN data product for the Vaisala RS41 radiosonde (version 1, RS41-GDP.1). The magnitude of the averaged correction profile increases gradually from 0.1 K at the surface to approximately 0.8 K at 35 km altitude. Comparison between sounding data (N = 154) that were GRUAN-processed and Vaisala-processed reveal that the daytime differences are smaller than +0.1 K (GRUAN – Vaisala) in the troposphere and increase above the tropopause steadily with altitude to +0.35 K (GRUAN – Vaisala) at 35 km. These differences are just within the limits of the combined uncertainties (with coverage factor k = 2) of both data products, meaning that the GRUAN processing and the Vaisala processing are in agreement.


Author(s):  
N. F. Ziegler

A high-voltage terminal has been constructed for housing the various power supplies and metering circuits required by the field-emission gun (described elsewhere in these Proceedings) for the high-coherence microscope. The terminal is cylindrical in shape having a diameter of 14 inches and a length of 24 inches. It is completely enclosed by an aluminum housing filled with Freon-12 gas at essentially atmospheric pressure. The potential of the terminal relative to ground is, of course, equal to the accelerating potential of the microscope, which in the present case, is 150 kilovolts maximum.


Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


Author(s):  
L.D. Schmidt ◽  
K. R. Krause ◽  
J. M. Schwartz ◽  
X. Chu

The evolution of microstructures of 10- to 100-Å diameter particles of Rh and Pt on SiO2 and Al2O3 following treatment in reducing, oxidizing, and reacting conditions have been characterized by TEM. We are able to transfer particles repeatedly between microscope and a reactor furnace so that the structural evolution of single particles can be examined following treatments in gases at atmospheric pressure. We are especially interested in the role of Ce additives on noble metals such as Pt and Rh. These systems are crucial in the automotive catalytic converter, and rare earths can significantly modify catalytic properties in many reactions. In particular, we are concerned with the oxidation state of Ce and its role in formation of mixed oxides with metals or with the support. For this we employ EELS in TEM, a technique uniquely suited to detect chemical shifts with ∼30Å resolution.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-251-Pr8-258 ◽  
Author(s):  
N. E. Fedotova ◽  
A. N. Mikheev ◽  
N. V. Gelfond ◽  
I. K. Igumenov ◽  
N. B. Morozova ◽  
...  

1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-221-Pr8-228
Author(s):  
E. de Paola ◽  
P. Duverneuil ◽  
A. Langlais ◽  
M. Nguyen

Sign in / Sign up

Export Citation Format

Share Document