scholarly journals Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41

2021 ◽  
Author(s):  
Christoph von Rohden ◽  
Michael Sommer ◽  
Tatjana Naebert ◽  
Vasyl Motuz ◽  
Ruud J. Dirksen

Abstract. The paper presents the Simulator for Investigation of Solar Temperature Error of Radiosondes (SISTER), a setup that was developed to quantify the solar heating of the temperature sensor of radiosondes under laboratory conditions by recreating as closely as possible the atmospheric and illumination conditions that are encountered during a daytime radiosounding ascent. SISTER controls the pressure (3 hPa to 1020 hPa) and ventilation speed of the air inside the windtunnel-like setup to simulate the conditions between the surface and 35 km altitude, to determine the dependence of the radiation temperature error on the irradiance and the convective cooling. The radiosonde is mounted inside a quartz tube, while the complete sensor boom is illuminated by an external light source to include the conductive heat transfer between sensor and boom. A special feature of SISTER is that the radiosonde is rotated around its axis to imitate the spinning of the radiosonde in flight. The characterisation of the radiation temperature error is performed for various pressures, ventilation speeds and illumination angles, yielding a 2D-parameterisation of the radiation error for each illumination angle, with an uncertainty smaller than 0.2 K (k = 2) for typical ascend speeds. This parameterisation is applied in the GRUAN processing for radiosonde data, which relies on the extensive characterisation of the sensor properties to produce a traceable reference data product which is free of manufacturer dependent effects. The GRUAN radiation correction model combines the laboratory characterisation with model calculations of the actual radiation field during the sounding to estimate the correction profile. In the second part of this paper it is described how this procedure was applied in the development of the GRUAN data product for the Vaisala RS41 radiosonde (version 1, RS41-GDP.1). The magnitude of the averaged correction profile increases gradually from 0.1 K at the surface to approximately 0.8 K at 35 km altitude. Comparison between sounding data (N = 154) that were GRUAN-processed and Vaisala-processed reveal that the daytime differences are smaller than +0.1 K (GRUAN – Vaisala) in the troposphere and increase above the tropopause steadily with altitude to +0.35 K (GRUAN – Vaisala) at 35 km. These differences are just within the limits of the combined uncertainties (with coverage factor k = 2) of both data products, meaning that the GRUAN processing and the Vaisala processing are in agreement.

2016 ◽  
Vol 33 (1) ◽  
pp. 202-216 ◽  
Author(s):  
Yu Zhao ◽  
Guoyu Wang ◽  
Biao Huang

Purpose – The purpose of this paper is to assess the predictive capability of the streamline curvature correction model (CCM) and investigate the unsteady vortex behavior of the cloud cavitating flows around a hydrofoil. Design/methodology/approach – The design of the paper is based on introducing the curvature correction method to the original k-ε model. Calculations of unsteady cloud cavitating flows around a Clark-Y hydrofoil are performed using both the CCM and the baseline model. Findings – Compared with the baseline model, better agreements are observed between the predictions of the CCM model and experimental data, especially the cavity shedding process. Based on the computations, it is demonstrated that streamline curvature correction of the CCM model can effectively decrease predicted turbulence kinetic energy and eddy viscosity in cavity shedding region. This leads to the better prediction for the recirculation zone located downstream of the attached cavity, and dynamics of this recirculation zone contribute to the formation and development of the re-entrant jet. Originality/value – The authors apply streamline curvature correction to the calculations of unsteady cloud cavitating flows and discuss the interactions between the cavitation unsteadiness and vortex structures to get an insight of the correction mechanics.


2014 ◽  
Vol 2 (1) ◽  
pp. 55-71 ◽  
Author(s):  
J. Limberger ◽  
P. Calcagno ◽  
A. Manzella ◽  
E. Trumpy ◽  
T. Boxem ◽  
...  

<p><strong>Abstract.</strong> In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. <br><br> With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh<sup>−1</sup> in 2020, EUR 127 MWh<sup>−1</sup> in 2030, and EUR 70 MWh<sup>−1</sup> in 2050. Cutoff values of EUR 200 MWh<sup>−1</sup> in 2020, EUR 150 MWh<sup>−1</sup> in 2030, and EUR 100 MWh<sup>−1</sup> in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GW<sub>e</sub> in 2020, 22 GW<sub>e</sub> in 2030, and 522 GW<sub>e</sub> in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.</p>


2021 ◽  
Author(s):  
Michael Sommer ◽  
Christoph von Rohden ◽  
Tzvetan Simeonov ◽  
Ruud Dirksen

&lt;p&gt;One of the main goals of the GCOS Reference Upper Air Network (GRUAN) is to perform reference observations of profiles of atmospheric temperature, humidity and wind for monitoring climate change. Two essential criteria for establishing a reference observation are measurement-traceability and the availability of measurement uncertainties. Radiosoundings have proven valuable in providing in-situ profiles of temperature, humidity, pressure and wind at unmatched vertical resolution. Data products from commercial radiosondes often rely on black-box or proprietary algorithms, which are not disclosed to the scientific user. Furthermore, long-term time-series from these products are frequently hampered by changes in the hardware and/or the data processing.&lt;/p&gt;&lt;p&gt;The GRUAN data products (GDP&amp;#8217;s) comply with the above-mentioned criteria for a reference product. Correction algorithms are open-source and well documented and the data include vertically resolved best estimates of the uncertainties. Another major advantage of a GRUAN data product is that it includes the radiosonde&amp;#8217;s raw measurement data, which allows for reprocessing when new or improved corrections become available. Currently, GDP&amp;#8217;s are available for the Vaisala RS92 and Meisei RS-11G radiosondes. Data products for additional radiosonde models, as well as for other measurement techniques are in the making. The GDP&amp;#8217;s are used to determine trends, constrain and calibrate data from more spatially&amp;#8208;comprehensive observing systems (including satellites and current radiosonde networks), and provide appropriate data for studying atmospheric processes.&lt;/p&gt;&lt;p&gt;This presentation introduces the GRUAN processing of Vaisala RS41 radiosoundings, the correction algorithms that are applied, and the derivation of the vertically resolved uncertainty estimates. Well-known, dominant error sources for the RS41 profiles are related to solar radiation, causing a temperature error, and time-lag of the humidity sensor at low temperatures. The corrections for these error sources are based on dedicated experiments that were performed at Lindenberg observatory to measure the response of the RS41 temperature sensor to solar irradiance and to determine the time-lag of the humidity sensor at temperatures down to -70 &amp;#176;C. The RS41-GDP.1 is planned to become available in 2021. The majority of the 30, globally distributed, GRUAN sites employ the RS41, and its predecessor the RS92 before, establishing a continuous data record of more than 10 years of reference climate observations.&lt;/p&gt;


2021 ◽  
Author(s):  
Taj Alasfia M brakat ◽  
Mahmoud Adam Hassan

Abstract In this study a dynamic model Simulation was carried out using ASPEN HYSY for industrial refinery fired heater, PID controller was applied to control the flue gas exit temperature. the simulation shows perfect agreement with the datasheet of the furnace. It was found that Increasing the number of the tube rows in convection bank from 2 to 3 allows us to recover approximately 5% of the overall efficiency, hence the duty furnace has increased from 65.9MW to 68.1MW and the fuel flow in like manner has increased from 5597kg/h to 5807kg/h moreover Adding more rows has a reverse return as we start to notice increase on the flue gas temperature. Furthermore, sensitivity analysis was conducted with HYSYS to determine one of the most important parameters that affect the performance of the heater based on the data generated from the simulation. MATLAB code was generated for efficiency calculation and for parameter manipulation, the code was designed to be flexible as possible, user will just need to replace the nominal fuel and air characteristics. for gaining optimum furnace operation the heat transfer inside the furnace was studied, and the results were compared with previous research involving furnace analysis to validate models, the heat transfer coefficient is determined by analysis of conductive heat transfer through the boundary layer. well-stirred model was used for mathematical model calculations and for optimization of furnace operation, the models were validated with ASPEN Exchanger Design and Rating(EDR) alongside ASPEN HYSYS


2018 ◽  
Vol 5 (11) ◽  
pp. 777-789 ◽  
Author(s):  
Yibin Yao ◽  
Zhangyu Sun ◽  
Chaoqian Xu ◽  
Liang Zhang ◽  
Yangyang Wan

1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


Sign in / Sign up

Export Citation Format

Share Document