scholarly journals Impacts of Water Vapor on Saharan Air Layer Radiative Heating

2019 ◽  
Vol 46 (24) ◽  
pp. 14854-14862 ◽  
Author(s):  
Manuel Gutleben ◽  
Silke Groß ◽  
Martin Wirth ◽  
Claudia Emde ◽  
Bernhard Mayer
2009 ◽  
Vol 22 (19) ◽  
pp. 5149-5162 ◽  
Author(s):  
Sun Wong ◽  
Andrew E. Dessler ◽  
Natalie M. Mahowald ◽  
Ping Yang ◽  
Qian Feng

Abstract The role of Saharan dust and dry anomaly in maintaining the temperature inversion in the Saharan air layer (SAL) is investigated. The dust aerosol optical thickness (AOT) in the SAL is inferred from the measurements taken by Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the corresponding temperature and specific humidity anomalies are identified using the National Centers for Environmental Prediction (NCEP) data in August–September over the North Atlantic tropical cyclone (TC) main development region (MDR; 10°–20°N, 40°–60°W). The authors also study the SAL simulated in the National Center of Atmospheric Research (NCAR) Community Atmosphere Model, version 3 (CAM3), coupled with dust radiative effect. It is found that higher AOT is associated with warmer and dryer anomalies below 700 hPa, which increases the atmospheric stability. The calculated instantaneous radiative heating anomalies from a radiative transfer model indicate that both the dust and low humidity are essential to maintaining the temperature structure in the SAL against thermal relaxation. At 850 hPa, heating anomalies caused by both the dust and dry anomalies (for AOT > 0.8) are 0.2–0.4 K day−1. The dust heats the atmosphere below 600 hPa, while the dry anomaly cools the atmosphere below 925 hPa, resulting in a peak of heating rate anomaly located at 700–850 hPa. In the eastern Atlantic, dust contributes about 50% of the heating rate anomaly. Westward of 40°W, when the dust content becomes small (AOT < 0.6), the heating rates are more sensitive to the water vapor profile used in the radiative transfer calculation. Retrieving or simulating correct water vapor profiles is essential to the assessment of the SAL heating budgets in regions where the dust content in the SAL is small.


2012 ◽  
Vol 69 (7) ◽  
pp. 2256-2271 ◽  
Author(s):  
Ming Cai ◽  
Ka-Kit Tung

Abstract Despite the differences in the spatial patterns of the external forcing associated with a doubling CO2 and with a 2% solar variability, the final responses in the troposphere and at the surface in a three-dimensional general circulation model appear remarkably similar. Various feedback processes are diagnosed and compared using the climate feedback–response analysis method (CFRAM) to understand the mechanisms responsible. At the surface, solar radiative forcing is stronger in the tropics than at the high latitudes, whereas greenhouse radiative forcing is stronger at high latitudes compared with the tropics. Also solar forcing is positive everywhere in the troposphere and greenhouse radiative forcing is positive mainly in the lower troposphere. The water vapor feedback strengthens the upward-decreasing radiative heating profile in the tropics and the poleward-decreasing radiative heating profile in the lower troposphere. The “evaporative” and convective feedbacks play an important role only in the tropics where they act to reduce the warming at the surface and lower troposphere in favor of upper-troposphere warming. Both water vapor feedback and enhancement of convection in the tropics further strengthen the initial poleward-decreasing profile of energy flux convergence perturbations throughout the troposphere. As a result, the large-scale dynamical poleward energy transport, which acts on the negative temperature gradient, is enhanced in both cases, contributing to a polar amplification of warming aloft and a warming reduction in the tropics. The dynamical amplification of polar atmospheric warming also contributes additional warming to the surface below via downward thermal radiation.


2008 ◽  
Vol 21 (23) ◽  
pp. 6141-6155 ◽  
Author(s):  
Graeme L. Stephens ◽  
Todd D. Ellis

Abstract This paper examines the controls on global precipitation that are evident in the transient experiments conducted using coupled climate models collected for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The change in precipitation, water vapor, clouds, and radiative heating of the atmosphere evident in the 1% increase in carbon dioxide until doubled (1pctto2x) scenario is examined. As noted in other studies, the ensemble-mean changes in water vapor as carbon dioxide is doubled occur at a rate similar to that predicted by the Clausius–Clapeyron relationship. The ratio of global changes in precipitation to global changes in water vapor offers some insight on how readily increased water vapor is converted into precipitation in modeled climate change. This ratio ɛ is introduced in this paper as a gross indicator of the global precipitation efficiency under global warming. The main findings of this paper are threefold. First, increases in the global precipitation track increase atmospheric radiative energy loss and the ratio of precipitation sensitivity to water vapor sensitivity is primarily determined by changes to this atmospheric column energy loss. A reference limit to this ratio is introduced as the rate at which the emission of radiation from the clear-sky atmosphere increases as water vapor increases. It is shown that the derived efficiency based on the simple ratio of precipitation to water vapor sensitivities of models in fact closely matches the sensitivity derived from simple energy balance arguments involving changes to water vapor emission alone. Second, although the rate of increase of clear-sky emission is the dominant factor in the change to the energy balance of the atmosphere, there are two important and offsetting processes that contribute to ɛ in the model simulations studied: One involves a negative feedback through cloud radiative heating that acts to reduce the efficiency; the other is the global reduction in sensible heating that counteracts the effects of the cloud feedback and increases the efficiency. These counteracting feedbacks only apply on the global scale. Third, the negative cloud radiative heating feedback occurs through reductions of cloud amount in the middle troposphere, defined as the layer between 680 and 440 hPa, and by slight global cloud decreases in the lower troposphere. These changes act in a manner to expose the warmer atmosphere below to high clouds, thus resulting in a net warming of the atmospheric column by clouds and a negative feedback on the precipitation.


2014 ◽  
Vol 71 (3) ◽  
pp. 1143-1157 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Satellite observations of temperature, optically thin cirrus clouds, and trace gases derived from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and the Microwave Limb Sounder (MLS) are analyzed in combination with Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) wind and humidity fields in the tropical tropopause transition layer (TTL), using the Madden–Julian oscillation (MJO) as a carrier signal. MJO-related deep convection induces planetary-scale Kelvin and Rossby waves in the stably stratified TTL. Regions of ascent in these waves are associated with anomalously low temperatures, high radiative heating rates, enhanced cirrus occurrence, and high carbon monoxide and low ozone concentrations. Low water vapor mixing ratio anomalies lag the low temperature anomalies by about 1–2 weeks. The anomalies in all fields propagate eastward, circumnavigating the tropical belt over a roughly 40-day interval. Equatorial cross sections reveal that the anomalies tilt eastward with height in the TTL and propagate downward from the lower stratosphere into the upper troposphere. As MJO-related convection moves into the western Pacific and dissipates, a fast-moving Kelvin wave flanked by Rossby waves propagates eastward across South America and Africa into the western Indian Ocean. The region of equatorial westerly wind anomalies behind the Kelvin wave front lengthens until it encompasses most of the tropics at the 150-hPa level, giving rise to equatorially symmetric, anomalously low zonal-mean temperature and water vapor mixing ratio and enhanced cirrus above about 100 hPa.


2005 ◽  
Vol 62 (8) ◽  
pp. 2770-2789 ◽  
Author(s):  
Sandrine Bony ◽  
Kerry A. Emanuel

Abstract Recent observations of the tropical atmosphere reveal large variations of water vapor and clouds at intraseasonal time scales. This study investigates the role of these variations in the large-scale organization of the tropical atmosphere, and in intraseasonal variability in particular. For this purpose, the influence of feedbacks between moisture (water vapor, clouds), radiation, and convection that affect the growth rate and the phase speed of unstable modes of the tropical atmosphere is investigated. Results from a simple linear model suggest that interactions between moisture and tropospheric radiative cooling, referred to as moist-radiative feedbacks, play a significant role in tropical intraseasonal variability. Their primary effect is to reduce the phase speed of large-scale tropical disturbances: by cooling the atmosphere less efficiently during the rising phase of the oscillations (when the atmosphere is moister) than during episodes of large-scale subsidence (when the atmosphere is drier), the atmospheric radiative heating reduces the effective stratification felt by propagating waves and slows down their propagation. In the presence of significant moist-radiative feedbacks, planetary disturbances are characterized by an approximately constant frequency. In addition, moist-radiative feedbacks excite small-scale disturbances advected by the mean flow. The interactions between moisture and convection exert a selective damping effect upon small-scale disturbances, thereby favoring large-scale propagating waves at the expense of small-scale advective disturbances. They also weaken the ability of radiative processes to slow down the propagation of planetary-scale disturbances. This study suggests that a deficient simulation of cloud radiative interactions or of convection-moisture interactions may explain some of the difficulties experienced by general circulation models in simulating tropical intraseasonal oscillations.


2007 ◽  
Vol 7 (5) ◽  
pp. 1313-1332 ◽  
Author(s):  
J. Lelieveld ◽  
C. Brühl ◽  
P. Jöckel ◽  
B. Steil ◽  
P. J. Crutzen ◽  
...  

Abstract. The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv) periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document