scholarly journals On the Role of Moist Processes in Tropical Intraseasonal Variability: Cloud–Radiation and Moisture–Convection Feedbacks

2005 ◽  
Vol 62 (8) ◽  
pp. 2770-2789 ◽  
Author(s):  
Sandrine Bony ◽  
Kerry A. Emanuel

Abstract Recent observations of the tropical atmosphere reveal large variations of water vapor and clouds at intraseasonal time scales. This study investigates the role of these variations in the large-scale organization of the tropical atmosphere, and in intraseasonal variability in particular. For this purpose, the influence of feedbacks between moisture (water vapor, clouds), radiation, and convection that affect the growth rate and the phase speed of unstable modes of the tropical atmosphere is investigated. Results from a simple linear model suggest that interactions between moisture and tropospheric radiative cooling, referred to as moist-radiative feedbacks, play a significant role in tropical intraseasonal variability. Their primary effect is to reduce the phase speed of large-scale tropical disturbances: by cooling the atmosphere less efficiently during the rising phase of the oscillations (when the atmosphere is moister) than during episodes of large-scale subsidence (when the atmosphere is drier), the atmospheric radiative heating reduces the effective stratification felt by propagating waves and slows down their propagation. In the presence of significant moist-radiative feedbacks, planetary disturbances are characterized by an approximately constant frequency. In addition, moist-radiative feedbacks excite small-scale disturbances advected by the mean flow. The interactions between moisture and convection exert a selective damping effect upon small-scale disturbances, thereby favoring large-scale propagating waves at the expense of small-scale advective disturbances. They also weaken the ability of radiative processes to slow down the propagation of planetary-scale disturbances. This study suggests that a deficient simulation of cloud radiative interactions or of convection-moisture interactions may explain some of the difficulties experienced by general circulation models in simulating tropical intraseasonal oscillations.

2006 ◽  
Vol 63 (8) ◽  
pp. 2140-2155 ◽  
Author(s):  
Danče Zurovac-Jevtić ◽  
Sandrine Bony ◽  
Kerry Emanuel

Abstract Observations show that convective perturbations of the tropical atmosphere are associated with substantial variations of clouds and water vapor. Recent studies suggest that these variations may play an active role in the large-scale organization of the tropical atmosphere. The present study investigates that possibility by using a two-dimensional, nonrotating model that includes a set of physical parameterizations carefully evaluated against tropical data. In the absence of cloud–radiation interactions, the model spontaneously generates fast upwind (eastward) moving planetary-scale oscillations through the wind-induced surface heat exchange mechanism. In the presence of cloud–radiative effects, the model generates slower upwind (eastward) propagating modes in addition to small-scale disturbances advected downwind (westward) by the mean flow. Enhanced cloud–radiative effects further slow down upwind propagating waves and make them more prominent in the spectrum. On the other hand, the model suggests that interactions between moisture and convection favor the prominence of moist Kelvin-like waves in tropical variability at the expense of small-scale advective disturbances. These numerical results, consistent with theoretical predictions, suggest that the interaction of water vapor and cloud variations with convection and radiation plays an active role in the large-scale organization of the tropical atmosphere.


2019 ◽  
Vol 4 (12) ◽  
Author(s):  
C. Marchioli ◽  
H. Bhatia ◽  
G. Sardina ◽  
L. Brandt ◽  
A. Soldati

2016 ◽  
Vol 113 (17) ◽  
pp. 4688-4693 ◽  
Author(s):  
H. Clark Barrett ◽  
Alexander Bolyanatz ◽  
Alyssa N. Crittenden ◽  
Daniel M. T. Fessler ◽  
Simon Fitzpatrick ◽  
...  

Intent and mitigating circumstances play a central role in moral and legal assessments in large-scale industrialized societies. Although these features of moral assessment are widely assumed to be universal, to date, they have only been studied in a narrow range of societies. We show that there is substantial cross-cultural variation among eight traditional small-scale societies (ranging from hunter-gatherer to pastoralist to horticulturalist) and two Western societies (one urban, one rural) in the extent to which intent and mitigating circumstances influence moral judgments. Although participants in all societies took such factors into account to some degree, they did so to very different extents, varying in both the types of considerations taken into account and the types of violations to which such considerations were applied. The particular patterns of assessment characteristic of large-scale industrialized societies may thus reflect relatively recently culturally evolved norms rather than inherent features of human moral judgment.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


Significance Although large-scale social protest in Bahrain has been cowed over the ten years since the ‘Arab uprisings’, small-scale demonstrations recur, reflecting a base level of discontent. Mobilising issues include economic pressures, limited political representation (especially of the Shia majority) and, most recently, ties with Israel. Impacts Despite protests, Israel’s and Bahrain’s respective ambassadors will keep up high-profile activity and statements. The authorities are likely to exaggerate the role of Iranian interference in order to deepen the Sunni-Shia divide. If Riyadh manages to extricate itself from the Yemen war, that could partly reduce the pressure on Manama.


Jurnal AKTUAL ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 47
Author(s):  
Aisah Aisah

Rice Milling Company is rice industry’s oldest and largest classified in Indonesia, which is able to absorb more than 10 million workers, handles more than 40 million tons of grain.  Rice Milling Company agro-industy is the central point, because this is where the main product is obtained in the form of rice and raw materials for advanced processing of food and industrial products.  Rice Miling Unit in the district of OKU Timur there is some skala, ranging form small-scale, medium-scale to large-scale.  Fuctional benefits of each different scale milling is also different.  The average rice farmers often sell gabahnya to the rice milling unit closest to the place residence, whether it is large-scale, medium and small.  Rice produced by the milling-grinding different quality.  Usually when a large-scale millimg yield of rice is cleaner than the other scale.  But it does not become a reference for milling grain milling usually depends on consumer demand.  The purpose of the study are : 1.  To determine levels of volume (tonnage) and the retention time of each service fuctional rice storage (barns) wich carried a different scale rice milling unit.  2.  To determine differences in the bebefits of economic transactions received by farmers and rice millers of different scale of business, especially when seen from the level of the milling costs, the purchase price of rice by rice milling unit, and the quality of milling services and service scale.  The result show that : the fuctional role of each is different milling.  Large-scale milling has three fuctional roles are : Processing, storage and distribution.  Medium-scale miling functional has two roles, namely : processing and distribution.  While small-scale rice milling unit has only two functional roles are : processing and storage.


2006 ◽  
Vol 19 (7) ◽  
pp. 1238-1260 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Tetsuzo Yasunari

Abstract Five years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data were used to investigate the time and space characteristics of the diurnal cycle of rainfall over and around Borneo, an island in the Maritime Continent. The diurnal cycle shows a systematic modulation that is associated with intraseasonal variability in the large-scale circulation pattern, with regimes associated with low-level easterlies or westerlies over the island. The lower-tropospheric westerly (easterly) components correspond to periods of active (inactive) convection over the island that are associated with the passage of intraseasonal atmospheric disturbances related to the Madden–Julian oscillation. A striking feature is that rainfall activity propagates to the leeward side of the island between midnight and morning. The inferred phase speed of the propagation is about 3 m s−1 in the easterly regime and 7 m s−1 in the westerly regime. Propagation occurs over the entire island, causing a leeward enhancement of rainfall. The vertical structure of the developed convection/rainfall system differs remarkably between the two regimes. In the easterly regime, stratiform rains are widespread over the island at midnight, whereas in the westerly regime, local convective rainfall dominates. Over offshore regions, convective rainfall initially dominates then gradually decreases in both regimes, while the storms develop into deeper convective systems in the easterly regime. Aside from leeward rainfall propagation, shallow storms develop over the South China Sea region during the westerly regime, resulting in heavy precipitation from midnight through morning.


2021 ◽  
Author(s):  
Georgios Fragkoulidis ◽  
Volkmar Wirth

<p>The large-scale extratropical upper-tropospheric flow tends to organize itself into eastward-propagating Rossby wave packets (RWPs). Investigating the spatiotemporal evolution of RWPs and the underlying physical processes has been beneficial in showcasing the role of the upper-tropospheric flow in temperature and precipitation extremes. The use of recently developed diagnostics of local in space and time wave properties has provided further insight in this regard. Motivated by the above, these diagnostic methods are now being employed to investigate the intraseasonal to decadal variability of key RWP properties such as their amplitude, phase speed, and group velocity in reanalysis datasets. It is shown that these properties exhibit a distinct seasonal and interregional variability, while interesting patterns thereof emerge. Moreover, the interannual and long-term variability in these RWP properties is explored and significant decadal trends for specific regions and seasons are highlighted. Ongoing work aims at further utilizing the presented diagnostics and analyses toward an improved understanding of the extratropical large-scale flow variability from weather to climate time scales.</p>


This chapter extends the book’s insights about nature, technology, and nation to the larger history of the modern period. While the modern nation loses its grip as a locus of identity and analysis, attempts to understand the operation, disruption, and collapse of continental and global infrastructures continue to mix the natural and the machinic in ways that define them both. Those vulnerabilities emphasize large-scale catastrophe; historiographically, they mask the crucial role of small-scale failures in the experience and culture of late modernity, including its definition of nature. Historical actors turned the uneven geographical distribution of small-scale failures into a marker of distinctive local natures and an element of regional and national identity. Attending to those failures helps not only situate cold-war technologies in the larger modern history of natural and machinic orders; it helps provincialize the superpowers by casting problematic “other” natures as central and primary.


1994 ◽  
Vol 143 ◽  
pp. 159-171
Author(s):  
Ester Antonucci

The coronal features observed in X-ray emission, varying from the small-scale, short-lived bright points to the large-scale, long-lived coronal holes, are closely associated with the coronal magnetic field and its topology, and their variability depends strongly on the solar cycle. Here we discuss the spatial distribution of the coronal structures, the frequency distribution of the brightness variations in active regions, and the role of magnetic reconnection in determining the variability of the coronal features, on the basis of the new observations of the soft X-ray emission recently obtained with the Yohkoh satellite and the NIXT experiment.


Sign in / Sign up

Export Citation Format

Share Document