scholarly journals The Variation of Resonating Magnetospheric Field Lines With Changing Geomagnetic and Solar Wind Conditions

2019 ◽  
Vol 124 (7) ◽  
pp. 5353-5375 ◽  
Author(s):  
S. J. Wharton ◽  
D. M. Wright ◽  
T. K. Yeoman ◽  
M. K. James ◽  
J. K. Sandhu
Author(s):  
B. B. Tang ◽  
W. Y. Li ◽  
C. Wang ◽  
Yu. V. Khotyaintsev ◽  
D. B. Graham ◽  
...  

We report local secondary magnetic reconnection at Earth’s flank magnetopause by using the Magnetospheric Multiscale observations. This reconnection is found at the magnetopause boundary with a large magnetic shear between closed magnetospheric field lines and the open field lines generated by the primary magnetopause reconnection at large scales. Evidence of this secondary reconnection are presented, which include a secondary ion jet and the encounter of the electron diffusion region. Thus the observed secondary reconnection indicates a cross-scale process from a global scale to an electron scale. As the aurora brightening is also observed at the morning ionosphere, the present secondary reconnection suggests a new pathway for the entry of the solar wind into geospace, providing an important modification to the classic Dungey cycle.


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2004 ◽  
Vol 22 (10) ◽  
pp. 3537-3560 ◽  
Author(s):  
P. E. Sandholt ◽  
C. J. Farrugia ◽  
W. F. Denig

Abstract. In two case studies we elaborate on spatial and temporal structures of the dayside aurora within 08:00-16:00 magnetic local time (MLT) and discuss the relationship of this structure to solar wind-magnetosphere interconnection topology and the different stages of evolution of open field lines in the Dungey convection cycle. The detailed 2-D auroral morphology is obtained from continuous ground observations at Ny Ålesund (76° magnetic latitude (MLAT)), Svalbard during two days when the interplanetary magnetic field (IMF) is directed southeast (By>0; Bz<0). The auroral activity consists of the successive activations of the following forms: (i) latitudinally separated, sunward moving, arcs/bands of dayside boundary plasma sheet (BPS) origin, in the prenoon (08:00-11:00 MLT) and postnoon (12:00-16:00 MLT) sectors, within 70-75° MLAT, (ii) poleward moving auroral forms (PMAFs) emanating from the pre- and postnoon brightening events, and (iii) a specific activity appearing in the 07:00-10:00 MLT/75-80° MLAT during the prevailing IMF By>0 conditions. The pre- and postnoon activations are separated by a region of strongly attenuated auroral activity/intensity within the 11:00-12:00 MLT sector, often referred to as the midday gap aurora. The latter aurora is attributed to the presence of component reconnection at the subsolar magnetopause where the stagnant magnetosheath flow lead to field-aligned currents (FACs) which are of only moderate intensity. The much more active and intense aurorae in the prenoon (07:00-11:00 MLT) and postnoon (12:00-16:00 MLT) sectors originate in magnetopause reconnection events that are initiated well away from the subsolar point. The high-latitude auroral activity in the prenoon sector (feature iii) is found to be accompanied by a convection channel at the polar cap boundary. The associated ground magnetic deflection (DPY) is a Svalgaard-Mansurov effect. The convection channel is attributed to effective momentum transfer from the solar wind-magnetosphere dynamo in the high-latitude boundary layer (HBL), on the downstream side of the cusp.


2002 ◽  
Vol 20 (3) ◽  
pp. 311-320 ◽  
Author(s):  
J. Mĕrka ◽  
J. Šafránková ◽  
Z. Nĕmeček

Abstract. The width of the cusp region is an indicator of the strength of the merging process and the degree of opening of the magnetosphere. During three years, the Magion-4 satellite, as part of the Interball project, has collected a unique data set of cusp-like plasma observations in middle and high altitudes. For a comparison of high- and low-altitude cusp determination, we map our observations of cusp-like plasma along the magnetic field lines down to the Earth’s surface. We use the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations. The footprint positions show substantial latitudinal dependence on the dipole tilt angle. We fit this dependence with a linear function and subtract this function from observed cusp position. This process allows us to study both statistical width and location of the inspected region as a function of the solar wind and IMF parameters. Our processing of the Magion-4 measurements shows that high-altitude regions occupied by the cusp-like plasma (cusp and cleft) are projected onto a much broader area (in magnetic local time as well as in a latitude) than that determined in low altitudes. The trends of the shift of the cusp position with changes in the IMF direction established by low-altitude observations have been confirmed.Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; solar wind – magnetosphere interactions)


2021 ◽  
Author(s):  
Léa Griton ◽  
Sarah Watson ◽  
Nicolas Poirier ◽  
Alexis Rouillard ◽  
Karine Issautier ◽  
...  

&lt;p&gt;Different states of the slow solar wind are identified from in-situ measurements by Parker Solar Probe (PSP) inside 50 solar radii from the Sun (Encounters 1, 2, 4, 5 and 6). At such distances the wind measured at PSP has not yet undergone significant transformation related to the expansion and propagation of the wind. We focus in this study on the properties of the quiet solar wind with no magnetic switchbacks. The Slow Solar Wind (SSW) states differ by their density, flux, plasma beta and magnetic pressure. PSP's magnetic connectivity established with Potential Field Source Surface (PFSS) reconstructions, tested against extreme ultraviolet (EUV) and white-light imaging, reveals the different states under study generally correspond to transitions from streamers to equatorial coronal holes. Solar wind simulations run along these differing flux tubes reproduce the slower and denser wind measured in the streamer and the more tenuous wind measured in the coronal hole. Plasma heating is more intense at the base of the streamer field lines rooted near the boundary of the equatorial hole than those rooted closer to the center of the hole. This results in a higher wind flux driven inside the streamer than deeper inside the equatorial hole.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Anna Tenerani ◽  
Marco Velli ◽  
Lorenzo Matteini

&lt;p&gt;Alfv&amp;#233;nic fluctuations represent the dominant contributions to turbulent fluctuations in the solar wind, especially, but not limited to, the fastest streams with velocity of the order of 600-700 km/s. Alfv&amp;#233;nic fluctuations can contribute to solar wind heating and acceleration via wave pressure and turbulent heating. Observations show that such fluctuations are characterized by a nearly constant magnetic field amplitude, a condition which remains largely to be understood and that may be an indication of how fluctuations evolve and relax in the expanding solar wind. Interestingly, measurements from Parker Solar Probe have shown the ubiquitous and persistent presence of the so-called switchbacks. These are magnetic field lines which are strongly perturbed to the point that they produce local inversions of the radial magnetic field. The corresponding signature of switchbacks in the velocity field is that of local enhancements in the radial speed (or jets) that display the typical velocity-magnetic field correlation that characterizes Alfv&amp;#233;n waves propagating away from the Sun.&amp;#160;While there is not yet a general consensus on what is the origin of switchbacks and their connection to coronal activity, a first necessary step to answer these important questions is to understand how they evolve and how long they can persist in the solar wind. Here we investigate the evolution of switchbacks. We address how their evolution is affected by parametric instabilities and the possible role of expansion, by comparing models with the observed radial evolution of the fluctuations&amp;#8217; amplitude. We finally discuss what are the implications of our results for models of switchback generation and related open questions.&lt;/p&gt;


2020 ◽  
Vol 633 ◽  
pp. A87 ◽  
Author(s):  
L. Griton ◽  
F. Pantellini

Context. As proven by measurements at Uranus and Neptune, the magnetic dipole axis and planetary spin axis can be off by a large angle exceeding 45°. The magnetosphere of such an (exo-)planet is highly variable over a one-day period and it does potentially exhibit a complex magnetic tail structure. The dynamics and shape of rotating magnetospheres do obviously depend on the planet’s characteristics but also, and very substantially, on the orientation of the planetary spin axis with respect to the impinging, generally highly supersonic, stellar wind. Aims. On its orbit around the Sun, the orientation of Uranus’ spin axis with respect to the solar wind changes from quasi-perpendicular (solstice) to quasi-parallel (equinox). In this paper, we simulate the magnetosphere of a fictitious Uranus-like planet plunged in a supersonic plasma (the stellar wind) at equinox. A simulation with zero wind velocity is also presented in order to help disentangle the effects of the rotation from the effects of the supersonic wind in the structuring of the planetary magnetic tail. Methods. The ideal magnetohydrodynamic (MHD) equations in conservative form are integrated on a structured spherical grid using the Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). In order to limit diffusivity at grid level, we used background and residual decomposition of the magnetic field. The magnetic field is thus made of the sum of a prescribed time-dependent background field B0(t) and a residual field B1(t) computed by the code. In our simulations, B0(t) is essentially made of a rigidly rotating potential dipole field. Results. The first simulation shows that, while plunged in a non-magnetised plasma, a magnetic dipole rotating about an axis oriented at 90° with respect to itself does naturally accelerate the plasma away from the dipole around the rotation axis. The acceleration occurs over a spatial scale of the order of the Alfvénic co-rotation scale r*. During the acceleration, the dipole lines become stretched and twisted. The observed asymptotic fluid velocities are of the order of the phase speed of the fast MHD mode. In two simulations where the surrounding non-magnetised plasma was chosen to move at supersonic speed perpendicularly to the rotation axis (a situation that is reminiscent of Uranus in the solar wind at equinox), the lines of each hemisphere are symmetrically twisted and stretched as before. However, they are also bent by the supersonic flow, thus forming a magnetic tail of interlaced field lines of opposite polarity. Similarly to the case with no wind, the interlaced field lines and the attached plasma are accelerated by the rotation and also by the transfer of kinetic energy flux from the surrounding supersonic flow. The tailwards fluid velocity increases asymptotically towards the externally imposed flow velocity, or wind. In one more simulation, a transverse magnetic field, to both the spin axis and flow direction, was added to the impinging flow so that magnetic reconnection could occur between the dipole anchored field lines and the impinging field lines. No major difference with respect to the no-magnetised flow case is observed, except that the tailwards acceleration occurs in two steps and is slightly more efficient. In order to emphasise the effect of rotation, we only address the case of a fast-rotating planet where the co-rotation scale r* is of the order of the planetary counter-flow magnetopause stand-off distance rm. For Uranus, r*≫ rm and the effects of rotation are only visible at large tailwards distances r ≫ rm.


Sign in / Sign up

Export Citation Format

Share Document