scholarly journals Responses of Clouds and Large‐Scale Circulation to Global Warming Evaluated From Multidecadal Simulations Using a Global Nonhydrostatic Model

2019 ◽  
Vol 11 (9) ◽  
pp. 2980-2995 ◽  
Author(s):  
Akira T. Noda ◽  
Chihiro Kodama ◽  
Yohei Yamada ◽  
Masaki Satoh ◽  
Tomoo Ogura ◽  
...  
2012 ◽  
Vol 25 (6) ◽  
pp. 2178-2191 ◽  
Author(s):  
Masaki Satoh ◽  
Shin-ichi Iga ◽  
Hirofumi Tomita ◽  
Yoko Tsushima ◽  
Akira T. Noda

Abstract Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.


2019 ◽  
Vol 19 (20) ◽  
pp. 13129-13155 ◽  
Author(s):  
Justine Ringard ◽  
Marjolaine Chiriaco ◽  
Sophie Bastin ◽  
Florence Habets

Abstract. For several years, global warming has been unequivocal, leading to climate change at global, regional and local scales. A good understanding of climate characteristics and local variability is important for adaptation and response. Indeed, the contribution of local processes and their understanding in the context of warming are still very little studied and poorly represented in climate models. Improving the knowledge of surface–atmosphere feedback effects at local scales is therefore important for future projections. Using observed data in the Paris region from 1979 to 2017, this study characterizes the changes observed over the last 40 years for six climatic parameters (e.g. mean, maximum and minimum air temperature at 2 m, 2 m relative and specific humidities and precipitation) at the annual and seasonal scales and in summer, regardless of large-scale circulation, with an attribution of which part of the change is linked to large-scale circulation or thermodynamic. The results show that some trends differ from the ones observed at the regional or global scale. Indeed, in the Paris region, the maximum temperature increases faster than does the minimum temperature. The most significant trends are observed in spring and in summer, with a strong increase in temperature and a very strong decrease in relative humidity, while specific humidity and precipitation show no significant trends. The summer trends can be explained more precisely using large-scale circulation, especially regarding the evolution of the precipitation and specific humidity. The analysis indicates the important role of surface–atmosphere feedback in local variability and that this feedback is amplified or inhibited in a context of global warming, especially in an urban environment.


2020 ◽  
Author(s):  
Robin Chadwick ◽  
Angeline Pendergrass ◽  
Segolene Berthou ◽  
Lincoln Alves ◽  
Aurel Moise

<p>Global warming is expected to change the intensity distribution of daily tropical precipitation, with an increased frequency of heavy precipitation and reduced frequency of light precipitation. In general, this is likely to increase the risk of flooding, while also increasing the risk of long dry periods. However, on regional scales circulation change plays a major role in modulating this precipitation distribution change in climate model projections, so related climate change impacts will also be regionally dependent.</p><p>We propose a simple physical framework based on the dry static energy budget which explains regional daily precipitation distribution change in terms of changes in two physical drivers: large-scale circulation and time-mean convective inhibition (CIN). In this framework, increased CIN under global warming tends to reduce the frequency of convection, leading to a greater ‘recharge’ of instability between convective events, and consequently greater ‘discharge’ of latent heating (precipitation) during each event. Large-scale circulation regulates the speed of this recharge of instability via dry static energy flux convergence or divergence, and its change under warming is very regionally dependent. Changes in regional time-mean tropical precipitation are closely related to changes in large-scale circulation, so this framework also provides a physical link between changes in time-mean precipitation and changes in the daily intensity distribution of precipitation in each tropical region. </p>


2019 ◽  
Author(s):  
Justine Ringard ◽  
Marjolaine Chiriaco ◽  
Sophie Bastin ◽  
Florence Habets

Abstract. For several years, global warming has been unequivocal, leading to climate change at global, regional and local scales. A good understanding of climate characteristics and local variability is important for adaptation and response. Indeed, the contribution of local processes and their understanding in the context of warming are still very little studied and poorly represented in climate models. Improving the knowledge of surface-atmosphere feedback effects at local scales is therefore important for future projections. Using observed data in the Paris region from 1979 to 2017, this study characterizes the changes observed over the last 40 years for six climatic parameters (e.g., mean, maximum and minimum air temperature at 2 metres, 2 metres relative and specific humidities and precipitation) at the annual and seasonal scales and in summer, regardless of large-scale circulation, with an attribution of which part of the change is linked to large scale circulation or thermordynamic. The results show that some trends differ from the ones observed at the regional or global scale. Indeed, in the Paris region, the maximum temperature increases faster than does the minimum temperature. The most significant trends are observed in spring and in summer, with a strong increase in temperature and a very strong decrease in relative humidity, while specific humidity and precipitation show no significant trends. The summer trends can be explained more precisely using large-scale circulation, especially regarding the evolution of the precipitation and specific humidity. The analysis indicates the important role of surface-atmosphere feedback in local variability and that this feedback is amplified or inhibited in a context of global warming, especially in an urban environment.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2021 ◽  
Author(s):  
Alexander John Doyle ◽  
Thorwald Hendrik Matthias Stein ◽  
Andrew Turner

Sign in / Sign up

Export Citation Format

Share Document