Reduced‐Dimensional Gaussian Process Machine Learning for Groundwater Allocation Planning Using Swarm Theory

2020 ◽  
Vol 56 (3) ◽  
Author(s):  
Adam J. Siade ◽  
Tao Cui ◽  
Robert N. Karelse ◽  
Clive Hampton
2020 ◽  
Author(s):  
Marc Philipp Bahlke ◽  
Natnael Mogos ◽  
Jonny Proppe ◽  
Carmen Herrmann

Heisenberg exchange spin coupling between metal centers is essential for describing and understanding the electronic structure of many molecular catalysts, metalloenzymes, and molecular magnets for potential application in information technology. We explore the machine-learnability of exchange spin coupling, which has not been studied yet. We employ Gaussian process regression since it can potentially deal with small training sets (as likely associated with the rather complex molecular structures required for exploring spin coupling) and since it provides uncertainty estimates (“error bars”) along with predicted values. We compare a range of descriptors and kernels for 257 small dicopper complexes and find that a simple descriptor based on chemical intuition, consisting only of copper-bridge angles and copper-copper distances, clearly outperforms several more sophisticated descriptors when it comes to extrapolating towards larger experimentally relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability, while learning dipole moments is much harder. The strength of the sophisticated descriptors lies in their ability to linearize structure-property relationships, to the point that a simple linear ridge regression performs just as well as the kernel-based machine-learning model for our small dicopper data set. The superior extrapolation performance of the simple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing a suitable descriptor, and highlighting the interesting question of the role of chemical intuition vs. systematic or automated selection of features for machine learning in chemistry and material science.


2015 ◽  
Vol 40 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Alex K. Goins ◽  
Ryan Carpenter ◽  
Weng-Keen Wong ◽  
Ravi Balasubramanian

Author(s):  
Sachin Dev Suresh ◽  
Ali Qasim ◽  
Bhajan Lal ◽  
Syed Muhammad Imran ◽  
Khor Siak Foo

The production of oil and natural gas contributes to a significant amount of revenue generation in Malaysia thereby strengthening the country’s economy. The flow assurance industry is faced with impediments during smooth operation of the transmission pipeline in which gas hydrate formation is the most important. It affects the normal operation of the pipeline by plugging it. Under high pressure and low temperature conditions, gas hydrate is a crystalline structure consisting of a network of hydrogen bonds between host molecules of water and guest molecules of the incoming gases. Industry uses different types of chemical inhibitors in pipeline to suppress hydrate formation. To overcome this problem, machine learning algorithm has been introduced as part of risk management strategies. The objective of this paper is to utilize Machine Learning (ML) model which is Gaussian Process Regression (GPR). GPR is a new approach being applied to mitigate the growth of gas hydrate. The input parameters used are concentration and pressure of Carbon Dioxide (CO2) and Methane (CH4) gas hydrates whereas the output parameter is the Average Depression Temperature (ADT). The values for the parameter are taken from available data sets that enable GPR to predict the results accurately in terms of Coefficient of Determination, R2 and Mean Squared Error, MSE. The outcome from the research showed that GPR model provided with highest R2 value for training and testing data of 97.25% and 96.71%, respectively. MSE value for GPR was also found to be lowest for training and testing data of 0.019 and 0.023, respectively.


Measurement ◽  
2019 ◽  
Vol 137 ◽  
pp. 214-224 ◽  
Author(s):  
Ming Yu Liu ◽  
Chi Fai Cheung ◽  
Xiaobing Feng ◽  
Lai Ting Ho ◽  
Shu Ming Yang

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1927 ◽  
Author(s):  
Han-Shin Jo ◽  
Chanshin Park ◽  
Eunhyoung Lee ◽  
Haing Kun Choi ◽  
Jaedon Park

Although various linear log-distance path loss models have been developed for wireless sensor networks, advanced models are required to more accurately and flexibly represent the path loss for complex environments. This paper proposes a machine learning framework for modeling path loss using a combination of three key techniques: artificial neural network (ANN)-based multi-dimensional regression, Gaussian process-based variance analysis, and principle component analysis (PCA)-aided feature selection. In general, the measured path loss dataset comprises multiple features such as distance, antenna height, etc. First, PCA is adopted to reduce the number of features of the dataset and simplify the learning model accordingly. ANN then learns the path loss structure from the dataset with reduced dimension, and Gaussian process learns the shadowing effect. Path loss data measured in a suburban area in Korea are employed. We observe that the proposed combined path loss and shadowing model is more accurate and flexible compared to the conventional linear path loss plus log-normal shadowing model.


Small ◽  
2020 ◽  
Vol 16 (37) ◽  
pp. 2002878
Author(s):  
Kyle P. Kelley ◽  
Maxim Ziatdinov ◽  
Liam Collins ◽  
Michael A. Susner ◽  
Rama K. Vasudevan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document