Forecasting the permanent loss of lake ice in the Northern Hemisphere within the 21st century

Author(s):  
Sapna Sharma ◽  
Kevin Blagrave ◽  
Alessandro Filazzola ◽  
M. Arshad Imrit ◽  
Harrie‐Jan Hendricks Franssen
2019 ◽  
Vol 9 (3) ◽  
pp. 227-231 ◽  
Author(s):  
Sapna Sharma ◽  
Kevin Blagrave ◽  
John J. Magnuson ◽  
Catherine M. O’Reilly ◽  
Samantha Oliver ◽  
...  

2021 ◽  
Author(s):  
Yubao Qiu ◽  
Xingxing Wang ◽  
Matti Leppäranta ◽  
Bin Cheng ◽  
Yixiao Zhang

<p>Lake-ice phenology is an essential indicator of climate change impact for different regions (Livingstone, 1997; Duguay, 2010), which helps understand the regional characters of synchrony and asynchrony. The observation of lake ice phenology includes ground observation and remote sensing inversion. Although some lakes have been observed for hundreds of years, due to the limitations of the observation station and the experience of the observers, ground observations cannot obtain the lake ice phenology of the entire lake. Remote sensing has been used for the past 40 years, in particular, has provided data covering the high mountain and high latitude regions, where the environment is harsh and ground observations are lacking. Remote sensing also provides a unified data source and monitoring standard, and the possibility of monitoring changes in lake ice in different regions and making comparisons between them. The existing remote sensing retrieval products mainly cover North America and Europe, and data for Eurasia is lacking (Crétaux et al., 2020).</p><p>Based on the passive microwave, the lake ice phenology of 522 lakes in the northern hemisphere during 1978-2020 was obtained, including Freeze-Up Start (FUS), Freeze-Up End (FUE), Break-Up Start (BUS), Break-Up End (BUE), and Ice Cover Duration (ICD). The ICD is the duration from the FUS to the BUE, which can directly reflect the ice cover condition. At latitudes north of 60°N, the average of ICD is approximately 8-9 months in North America and 5-6 months in Eurasia. Limited by the spatial resolution of the passive microwave, lake ice monitoring is mainly in Northern Europe. Therefore, the average of ICD over Eurasia is shorter, while the ICD is more than 6 months for most lakes in Russia. After 2000, the ICD has shown a shrinking trend, except northeastern North America (southeast of the Hudson Bay) and the northern Tibetan Plateau. The reasons for the extension of ice cover duration need to be analyzed with parameters, such as temperature, the lake area, and lake depth, in the two regions.</p>


2011 ◽  
Vol 112 (2) ◽  
pp. 299-323 ◽  
Author(s):  
Barbara J. Benson ◽  
John J. Magnuson ◽  
Olaf P. Jensen ◽  
Virginia M. Card ◽  
Glenn Hodgkins ◽  
...  

2020 ◽  
Author(s):  
Martina Franz ◽  
Sönke Zaehle

Abstract. Tropospheric ozone and nitrogen deposition affect vegetation growth and thus the ability of the land biosphere to store carbon. However, the magnitude of this effect on the contemporary and future terrestrial carbon balance is insufficiently understood. Here, we apply an extended version of the O-CN terrestrial biosphere model that simulates the atmosphere to canopy transport of O3, its surface and stomatal uptake, as well as the ozone-induced leaf injury. We use this model to simulate past and future impacts of air pollution (ozone and nitrogen deposition) against a background of concurrent changes in climate and carbon dioxide concentrations (CO2) for two contrasting representative concentration pathways (RCP) scenarios (RCP2.6 and RCP8.5). The simulations show that O3-related damage considerably reduced Northern hemispheric gross primary production (GPP) and long-term carbon storage between 1850 and the 2010s. The ozone effect on GPP in the Northern hemisphere peaks at the end of the 20th century with reductions of 4 %, causing a reduction in the Northern hemispheric carbon sink of 0.4 Pg C yr−1. During the 21st century, ozone-induced reductions in GPP and carbon storage is projected to decline through a combination of air pollution control methods that reduce tropospheric O3 and the indirect effects of rising atmospheric CO2, which reduces stomatal uptake of ozone concurrent with increases of leaf-level water-use efficiency. However, in hotspot regions such as East Asia, the model simulations suggest a sustained decrease of GPP by more than 8 % during the 21st century. Regionally, ozone exposure reduces carbon storage at the end of the 21st century by up to 15 % in parts of Europe, the US and East Asia. These estimates are lower compared to previous studies, which partially results from the explicit representation of non-stomatal ozone destruction, which considerably reduces simulated ozone uptake by leaves and incurred injury. Our simulations suggest that ozone damage largely offsets the growth stimulating effect induced by nitrogen deposition in the Northern hemisphere until the 2050s. Thus, accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O3 might lead to an over estimation of carbon uptake and storage.


2021 ◽  
pp. 1-19
Author(s):  
Xingxing Wang ◽  
Yubao Qiu ◽  
Yixiao Zhang ◽  
Juha Lemmetyinen ◽  
Bin Cheng ◽  
...  

2000 ◽  
Vol 27 (5) ◽  
pp. 2770-2774 ◽  
Author(s):  
Barbara J. Benson ◽  
John J. Magnuson ◽  
Robert L. Jacob ◽  
Sarah L. Fuenger

2013 ◽  
Vol 13 (21) ◽  
pp. 10883-10905 ◽  
Author(s):  
L. D. Rotstayn ◽  
M. A. Collier ◽  
A. Chrastansky ◽  
S. J. Jeffrey ◽  
J.-J. Luo

Abstract. All the representative concentration pathways (RCPs) include declining aerosol emissions during the 21st century, but the effects of these declines on climate projections have had little attention. Here we assess the global and hemispheric-scale effects of declining anthropogenic aerosols in RCP4.5 in CSIRO-Mk3.6, a model from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results from this model are then compared with those from other CMIP5 models. We calculate the aerosol effective radiative forcing (ERF, including indirect effects) in CSIRO-Mk3.6 relative to 1850, using a series of atmospheric simulations with prescribed sea-surface temperatures (SST). Global-mean aerosol ERF at the top of the atmosphere is most negative in 2005 (−1.47 W m−2). Between 2005 and 2100 it increases by 1.46 W m−2, i.e., it approximately returns to 1850 levels. Although increasing greenhouse gases (GHGs) and declining aerosols both exert a positive ERF at the top of the atmosphere during the 21st century, they have opposing effects on radiative heating of the atmosphere: increasing GHGs warm the atmosphere, whereas declining aerosols cool the atmosphere due to reduced absorption of shortwave radiation by black carbon (BC). We then compare two projections for 2006–2100, using the coupled atmosphere-ocean version of the model. One (RCP45) follows the usual RCP4.5; the other (RCP45A2005) has identical forcing, except that emissions of anthropogenic aerosols and precursors are fixed at 2005 levels. The global-mean surface warming in RCP45 is 2.3 °C per 95 yr, of which almost half (1.1 °C) is caused by declining aerosols. The warming due to declining aerosols is almost twice as strong in the Northern Hemisphere as in the Southern Hemisphere, whereas that due to increasing GHGs is similar in the two hemispheres. For precipitation changes, the effects of declining aerosols are larger than those of increasing GHGs due to decreasing atmospheric absorption by black carbon: 63% of the projected global-mean precipitation increase of 0.16 mm per day is caused by declining aerosols. In the Northern Hemisphere, precipitation increases by 0.29 mm per day, of which 72% is caused by declining aerosols. Comparing 13 CMIP5 models, we find a correlation of –0.54 (significant at 5%) between aerosol ERF in the present climate and projected global-mean surface warming in RCP4.5; thus, models that have more negative aerosol ERF in the present climate tend to project stronger warming during 2006–2100. A similar correlation (–0.56) is found between aerosol ERF and projected changes in global-mean precipitation. These results suggest that aerosol forcing substantially modulates projected climate response in RCP4.5. In some respects, the effects of declining aerosols are quite distinct from those of increasing GHGs. Systematic efforts are needed to better quantify the role of declining aerosols in climate projections.


Sign in / Sign up

Export Citation Format

Share Document