An improved representation of aerosol wet removal by deep convection and impacts on simulated aerosol vertical profiles

Author(s):  
Yunpeng Shan ◽  
Xiaohong Liu ◽  
Lin Lin ◽  
Ziming Ke ◽  
Zheng Lu
2020 ◽  
Vol 77 (11) ◽  
pp. 3661-3681 ◽  
Author(s):  
John M. Peters ◽  
Hugh Morrison ◽  
Adam C. Varble ◽  
Walter M. Hannah ◽  
Scott E. Giangrande

AbstractResearch has suggested that the structure of deep convection often consists of a series of rising thermals, or “thermal chain,” which contrasts with existing conceptual models that are used to construct cumulus parameterizations. Simplified theoretical expressions for updraft properties obtained in Part I of this study are used to develop a hypothesis explaining why this structure occurs. In this hypothesis, cumulus updraft structure is strongly influenced by organized entrainment below the updraft’s vertical velocity maximum. In a dry environment, this enhanced entrainment can locally reduce condensation rates and increase evaporation, thus eroding buoyancy. For moderate-to-large initial cloud radius R, this breaks up the updraft into a succession of discrete pulses of rising motion (i.e., a thermal chain). For small R, this leads to the structure of a single, isolated rising thermal. In contrast, moist environments are hypothesized to favor plume-like updrafts for moderate-to-large R. In a series of axisymmetric numerical cloud simulations, R and environmental relative humidity (RH) are systematically varied to test this hypothesis. Vertical profiles of fractional entrainment rate, passive tracer concentration, buoyancy, and vertical velocity from these runs agree well with vertical profiles calculated from the theoretical expressions in Part I. Analysis of the simulations supports the hypothesized dependency of updraft structure on R and RH, that is, whether it consists of an isolated thermal, a thermal chain, or a plume, and the role of organized entrainment in driving this dependency. Additional three-dimensional (3D) turbulent cloud simulations are analyzed, and the behavior of these 3D runs is qualitatively consistent with the theoretical expressions and axisymmetric simulations.


2015 ◽  
Vol 8 (2) ◽  
pp. 409-429 ◽  
Author(s):  
L. K. Berg ◽  
M. Shrivastava ◽  
R. C. Easter ◽  
J. D. Fast ◽  
E. G. Chapman ◽  
...  

Abstract. A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as −50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.


2014 ◽  
Vol 7 (2) ◽  
pp. 2651-2704 ◽  
Author(s):  
L. K. Berg ◽  
M. Shrivastava ◽  
R. C. Easter ◽  
J. D. Fast ◽  
E. G. Chapman ◽  
...  

Abstract. A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as −50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.


2021 ◽  
Vol 21 (22) ◽  
pp. 16797-16816
Author(s):  
Yong Wang ◽  
Wenwen Xia ◽  
Guang J. Zhang

Abstract. Both frequency and intensity of rainfall affect aerosol wet deposition. With a stochastic deep convection scheme implemented into two state-of-the-art global climate models (GCMs), a recent study found that aerosol burdens are increased globally by reduced climatological mean wet removal of aerosols due to suppressed light rain. Motivated by their work, a novel approach is developed in this study to detect what rainfall rates are most efficient for wet removal (scavenging amount mode) of different aerosol species of different sizes in GCMs and applied to the National Center for Atmospheric Research Community Atmosphere Model version 5 (CAM5) with and without the stochastic convection cases. Results show that in the standard CAM5, no obvious differences in the scavenging amount mode are found among different aerosol types. However, the scavenging amount modes differ in the Aitken, accumulation and coarse modes, showing around 10–12, 8–9 and 7–8 mm d−1, respectively, over the tropics. As latitude increases poleward, the scavenging amount mode in each aerosol mode is decreased substantially. The scavenging amount mode is generally smaller over land than over ocean. With stochastic convection, the scavenging amount mode for all aerosol species in each mode is systematically increased, which is the most prominent along the Intertropical Convergence Zone, exceeding 20 mm d−1 for small particles. The scavenging amount modes in the two cases are both smaller than individual rainfall rates associated with the most accumulated rain (rainfall amount mode), further implying precipitation frequency is more important than precipitation intensity for aerosol wet removal. The notion of the scavenging amount mode can be applied to other GCMs to better understand the relation between rainfall and aerosol wet scavenging, which is important to better simulate aerosols.


Author(s):  
Erika L. Duran ◽  
Emily B. Berndt ◽  
Patrick Duran

AbstractHyperspectral infrared satellite sounding retrievals are used to examine thermodynamic changes in the tropical cyclone (TC) environment associated with the diurnal cycle of radiation. Vertical profiles of temperature and moisture are retrieved from the Suomi National Polar–orbiting Partnership (S–NPP) satellite system, National Oceanic and Atmospheric Administration (NOAA)–20, and the Meteorological Operational (MetOp) A/B satellite system, leveraging both infrared and microwave sounding technologies. Vertical profiles are binned radially based on distance from the storm center and composited at 4–hr intervals to reveal the evolution of the diurnal cycle. For the three cases examined – Hurricane Dorian (2019), Hurricane Florence (2018) and Hurricane Irma (2017) – a marked diurnal signal is evident that extends through a deep layer of the troposphere. Statistically significant differences at the 95% level are observed in temperature, moisture, and lapse rate profiles, indicating a moistening and destabilization of the mid to upper troposphere that is more pronounced near the inner core of the TC at night. Observations support a favorable environment for the formation of deep convection caused by diurnal differences in radiative heating tendencies, which could partially explain why new diurnal pulses tend to form around sunset. These findings demonstrate that the diurnal cycle of radiation affects TC thermodynamics through a deep layer of the troposphere, and suggest that hyperspectral infrared satellite sounding retrievals are valuable assets in detecting thermodynamic variations in TCs.


2010 ◽  
Vol 67 (6) ◽  
pp. 1908-1927 ◽  
Author(s):  
David M. Romps

Abstract A method is introduced for directly measuring convective entrainment and detrainment in a cloud-resolving simulation. This technique is used to quantify the errors in the entrainment and detrainment estimates obtained using the standard bulk-plume method. The bulk-plume method diagnoses these rates from the convective flux of some conserved tracer, such as total water in nonprecipitating convection. By not accounting for the variability of this tracer in clouds and in the environment, it is argued that the bulk-plume equations systematically underestimate entrainment. Using tracers with different vertical profiles, it is also shown that the bulk-plume estimates are tracer dependent and, in some cases, unphysical. The new direct-measurement technique diagnoses entrainment and detrainment at the gridcell level without any recourse to conserved tracers. Using this method in large-eddy simulations of shallow and deep convection, it is found that the bulk-plume method underestimates entrainment by roughly a factor of 2. The directly measured entrainment rates are then compared to cloud height and cloud buoyancy. Contrary to existing theories, fractional entrainment is not found to scale like the inverse of height, the cloud buoyancy, or the gradient of cloud buoyancy. On the other hand, fractional detrainment is found to scale linearly with cloud buoyancy. Finally, direct measurement is used to diagnose the spatial distribution of entrainment and detrainment during the evolution of an individual deep cumulonimbus.


2010 ◽  
Vol 16 (4) ◽  
pp. 3-12
Author(s):  
A.V. Shavrina ◽  
◽  
M. Kroon ◽  
V.A. Sheminova ◽  
Ya.V. Pavlenko ◽  
...  
Keyword(s):  

1982 ◽  
Vol 28 (98) ◽  
pp. 91-105 ◽  
Author(s):  
V. N. Nijampurkar ◽  
N. Bhandari ◽  
C. P. Vohra ◽  
V. Krishnan

AbstractSurface and core samples of Neh–nar Glacier in the Kashmir Valley have been analysed for the radionuclides 32Si. 210Pb, 40K, and 137Cs. The lateral and vertical profiles (at an altitude of about 4 140 m) reveal:(1)32Si activity decreasing slowly from the accumulation zone to 4 050 m altitude and then abruptly towards the snout.(2)Five zones of alternating high and low 210Pb activity in the surface samples.(3)An horizon at between 2 and 3 m depth containing 210Pb activity above natural levels. This horizon is also associated with 137Cs and a maximum in total ß activity.The ice samples have been dated on the basis of a simplified two–component model, the “fresh“contribution determined by 2l0Pb and the old component by 32Si. The following conclusions can be drawn from these observations:(1)The model age of the snout ice is c. 850 years.(2)The average rate of ice movement in the lower glacier is about 2 m/year, which compares well with the annual movement rate of 2.65 m/year observed since 1974.


Sign in / Sign up

Export Citation Format

Share Document