Oxygen Isotope Compositions of Cellulose in Earlywood of Larix cajanderi Determined by Water Source Rather Than Leaf Water Enrichment in a Permafrost Ecosystem, Eastern Siberia

2021 ◽  
Vol 126 (9) ◽  
Author(s):  
R. Fan ◽  
H. Shimada ◽  
S. Tei ◽  
T. C. Maximov ◽  
A. Sugimoto
2019 ◽  
Vol 16 (23) ◽  
pp. 4613-4625 ◽  
Author(s):  
Anne Alexandre ◽  
Elizabeth Webb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental relative humidity (RH) is a key climate parameter, but there is a lack of quantitative RH proxies suitable for climate model–data comparisons. Recently, a combination of climate chamber and natural transect calibrations have laid the groundwork for examining the robustness of the triple oxygen isotope composition (δ′18O and 17O-excess) of phytoliths, that can preserve in sediments, as a new proxy for past changes in RH. However, it was recommended that besides RH, additional factors that may impact δ′18O and 17O-excess of plant water and phytoliths be examined. Here, the effects of grass leaf length, leaf development stage and day–night alternations are addressed from growth chamber experiments. The triple oxygen isotope compositions of leaf water and phytoliths of the grass species F. arundinacea are analysed. Evolution of the leaf water δ′18O and 17O-excess along the leaf length can be modelled using a string-of-lakes approach to which an unevaporated–evaporated mixing equation must be added. We show that for phytoliths to record this evolution, a kinetic fractionation between leaf water and silica, increasing from the base to the apex, must be assumed. Despite the isotope heterogeneity of leaf water along the leaf length, the bulk leaf phytolith δ′18O and 17O-excess values can be estimated from the Craig and Gordon model and a mean leaf water–phytolith fractionation exponent (λPhyto-LW) of 0.521. In addition to not being leaf length dependent, δ′18O and 17O-excess of grass phytoliths are expected to be impacted only very slightly by the stem vs. leaf biomass ratio. Our experiment additionally shows that because a lot of silica polymerises in grasses when the leaf reaches senescence (58 % of leaf phytoliths in mass), RH prevailing during the start of senescence should be considered in addition to RH prevailing during leaf growth when interpreting the 17O-excess of grass bulk phytoliths. Although under the study conditions 17O-excessPhyto do not vary significantly from constant day to day–night conditions, additional monitoring at low RH conditions should be done before drawing any generalisable conclusions. Overall, this study strengthens the reliability of the 17O-excess of phytoliths to be used as a proxy of RH. If future studies show that the mean value of 0.521 used for the grass leaf water–phytolith fractionation exponent λPhyto-LW is not climate dependent, then grassland leaf water 17O-excess obtained from grassland phytolith 17O-excess would inform on isotope signals of several soil–plant-atmosphere processes.


2007 ◽  
Vol 146 (2) ◽  
pp. 729-736 ◽  
Author(s):  
Francesco Ripullone ◽  
Naoko Matsuo ◽  
Hilary Stuart-Williams ◽  
Suan Chin Wong ◽  
Marco Borghetti ◽  
...  

2007 ◽  
Vol 338 (3-4) ◽  
pp. 251-260 ◽  
Author(s):  
M.L. Lopez C ◽  
H. Saito ◽  
Y. Kobayashi ◽  
T. Shirota ◽  
G. Iwahana ◽  
...  

2013 ◽  
Vol 200 (1) ◽  
pp. 144-157 ◽  
Author(s):  
Arthur Gessler ◽  
Elke Brandes ◽  
Claudia Keitel ◽  
Sonja Boda ◽  
Zachary E. Kayler ◽  
...  

2013 ◽  
Vol 36 (7) ◽  
pp. 1338-1351 ◽  
Author(s):  
XIN SONG ◽  
MARGARET M. BARBOUR ◽  
GRAHAM D. FARQUHAR ◽  
DAVID R. VANN ◽  
BRENT R. HELLIKER

2003 ◽  
Vol 30 (10) ◽  
pp. 1059 ◽  
Author(s):  
Lucas A. Cernusak ◽  
S. Chin Wong ◽  
Graham D. Farquhar

We measured the oxygen isotope composition of both the water and dry matter components of phloem sap exported from photosynthesising Ricinus communis L. leaves. The 18O / 16O composition of exported dry matter matched almost exactly that expected for equilibrium with average lamina leaf water (leaf water exclusive of water associated with primary veins) with an isotope effect of αo=1.027, where αo=Ro / Rw , and Ro and Rw are 18O / 16O of organic molecules and water, respectively. Average lamina leaf water was enriched by 14–22‰ compared with source water under our experimental conditions, and depleted by 4–7‰, compared with evaporative site water. This showed that it is the average lamina leaf water 18O / 16O signal that is exported from photosynthesising leaves rather than a signal more closely related to that of evaporative site water or source water. Additionally, we found that water exported in phloem sap from photosynthesising leaves was enriched compared with source water; the mean phloem water enrichment observed for leaf petioles was 4.0 ± 1.5‰ (mean ± 1 s.d., n = 27). Phloem water collected from stem bases was also enriched compared with source water. However, the enrichment was approximately 0.8 times that observed for leaf petioles, suggesting some mixing between enriched phloem water and unenriched xylem water occurred during translocation. Results validated the assumption that organic molecules exported from photosynthesising leaves are enriched by 27‰ compared with average lamina leaf water. Furthermore, results suggest that the potential influence of enriched phloem water should be considered when interpreting the 18O / 16O signatures of plant organic material and plant cellulose.


2013 ◽  
Vol 10 (1) ◽  
pp. 1-48 ◽  
Author(s):  
J. H. Shim ◽  
H. H. Powers ◽  
C. W. Meyer ◽  
A. Knohl ◽  
T. E. Dawson ◽  
...  

Abstract. We conducted high frequency measurements of the δ18O value of atmospheric CO2 from a juniper (Juniperus monosperma) woodland in New Mexico, USA, over a four-year period to investigate climatic and physiological regulation of the δ18O value of ecosystem respiration (δR). Rain pulses reset δR with the dominant water source isotope composition, followed by progressive enrichment of δR. Transpiration (ET) was significantly related to post-pulse δR enrichment because leaf water δ18O value showed strong enrichment with increasing vapor pressure deficit that occurs following rain. Post-pulse δR enrichment was correlated with both ET and the ratio of ET to soil evaporation (ET / ES). In contrast, soil water δ18O value was relatively stable and δR enrichment was not correlated with ES. Model simulations captured the large post-pulse δR enrichments only when the offset between xylem and leaf water δ18O value was modeled explicitly and when a gross flux model for CO2 retro-diffusion was included. Drought impacts δR through the balance between evaporative demand, which enriches δR, and low soil moisture availability, which attenuates δR enrichment through reduced ET. The net result, observed throughout all four years of our study, was a negative correlation of post-precipitation δR enrichment with increasing drought.


2019 ◽  
Author(s):  
Anne Alexandre ◽  
Elizabeth Webb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental relative humidity (RH) is a key-climate parameter. However, there is a lack of quantitative RH proxies suitable for climate model-data comparisons. Recently, a combination of climate chamber and natural transect calibrations laid the groundwork for examining the robustness of the triple oxygen isotope composition (δ18O, δ17O) of phytoliths as a new proxy for past changes in RH. However, it was recommended that besides RH, additional factors that may impact δ18O and δ17O of plant water and phytoliths be examined. Here, the effects of leaf anatomy, leaf development stage and day/night alternations are addressed from the growth of the grass species F. arundinacea in climate chambers. Plant water and phytoliths are analyzed in δ18O and δ17O. Silicification patterns are examined using light and scanning electron observation of phytoliths. The isotope data show the increasing contribution of evaporated epidermal water to the bulk leaf water, from sheath to proximal and apical leaf blade. However, despite this isotope heterogeneity, δ18O and δ17O of the bulk leaf water can be predicted by the Craig and Gordon model, in the given experimental conditions (high RH). Regarding phytoliths, their forming water (mainly epidermal) is, as expected, more impacted by evaporation than the bulk leaf water. This discrepancy increases from sheath to proximal and apical blade and can be explained by the steepening of the radial concentration gradient of evaporated water along the leaf. However, we show that because most of silica polymerizes in epidermal long cells of the apical blade of the leaves, the δ18O and δ17O of bulk grass phytoliths should not be impacted by the diversity in grass anatomy. The data additionally show that most of silica polymerizes at the end of the leaf elongation stage and at the transition towards leaf senescence. Thus, climate conditions at that time should be considered when interpreting δ18O and δ17O of phytoliths from the natural environment. At least, no light/dark effect was detected on the δ18O and δ17O signature of plant water and phytoliths of F. arundinacea. However, when day/night alternations are characterized by significant changes in RH, the lowest RH conditions favoring evaporation and silica polymerization should be considered when calibrating the phytolith proxy. This study contributes to the identification of the parameters driving the δ18O and δ17O of bulk grass phytoliths. It additionally brings elements to further understand and model the δ18O and δ17O of grass leaf water, which influences the isotope signal of several processes at the soil/plant/atmosphere interface.


2016 ◽  
Author(s):  
Lien De Wispelaere ◽  
Samuel Bodé ◽  
Pedro Hervé-Fernández ◽  
Andreas Hemp ◽  
Dirk Verschuren ◽  
...  

Abstract. Lake Challa (3°19' S, 37°42' E) is a steep-sided crater lake situated in equatorial East Africa, a tropical semi-arid area with bimodal rainfall pattern. Plants in this region are exposed to a prolonged dry season and we investigated if (1) these plants show spatial variability and temporal shifts in their water source use; (2) seasonal differences in the isotopic composition of precipitation are reflected in xylem water; and (3) plant family, growth form, leaf phenology, habitat and season influence the xylem-to-leaf water deuterium enrichment. In this study, the δ2H and δ18O of precipitation, lake water, groundwater, plant xylem water and plant leaf water were measured across different plant species, seasons and plant habitats in the vicinity of Lake Challa. We found that plants rely mostly on water from the "short" rains falling from October to December (northeastern monsoon), as these recharge the soil after the long dry season. This plant-available water pool is only slightly replenished by the "long" rains falling from February to May (southeastern monsoon), in agreement with the "two water world" hypothesis according to which plants rely on a static water pool while a mobile water pool recharges the groundwater. Trees at the lake shore and on the crater rim use more evaporated water than shrubs in the same habitats, suggesting that trees tap water from the topsoil where the nutrient content is highest. Plants at the lake shore rely on a water source admixed with lake water. The enrichment in deuterium from xylem water to leaf water averages 24 ± 28 ‰. According to our results, plant species and their associated leaf phenology are the primary factors influencing this enrichment factor, while growth form and season have negligible effects.


2016 ◽  
Vol 211 (3) ◽  
pp. 1120-1128 ◽  
Author(s):  
Xin Song ◽  
Margaret M. Barbour

Sign in / Sign up

Export Citation Format

Share Document