scholarly journals Effects of grass leaf anatomy, development and light/dark alternation on the triple oxygen isotope signature of leaf water and phytoliths: insights for a new proxy of continental atmospheric humidity

Author(s):  
Anne Alexandre ◽  
Elizabeth Webb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental relative humidity (RH) is a key-climate parameter. However, there is a lack of quantitative RH proxies suitable for climate model-data comparisons. Recently, a combination of climate chamber and natural transect calibrations laid the groundwork for examining the robustness of the triple oxygen isotope composition (δ18O, δ17O) of phytoliths as a new proxy for past changes in RH. However, it was recommended that besides RH, additional factors that may impact δ18O and δ17O of plant water and phytoliths be examined. Here, the effects of leaf anatomy, leaf development stage and day/night alternations are addressed from the growth of the grass species F. arundinacea in climate chambers. Plant water and phytoliths are analyzed in δ18O and δ17O. Silicification patterns are examined using light and scanning electron observation of phytoliths. The isotope data show the increasing contribution of evaporated epidermal water to the bulk leaf water, from sheath to proximal and apical leaf blade. However, despite this isotope heterogeneity, δ18O and δ17O of the bulk leaf water can be predicted by the Craig and Gordon model, in the given experimental conditions (high RH). Regarding phytoliths, their forming water (mainly epidermal) is, as expected, more impacted by evaporation than the bulk leaf water. This discrepancy increases from sheath to proximal and apical blade and can be explained by the steepening of the radial concentration gradient of evaporated water along the leaf. However, we show that because most of silica polymerizes in epidermal long cells of the apical blade of the leaves, the δ18O and δ17O of bulk grass phytoliths should not be impacted by the diversity in grass anatomy. The data additionally show that most of silica polymerizes at the end of the leaf elongation stage and at the transition towards leaf senescence. Thus, climate conditions at that time should be considered when interpreting δ18O and δ17O of phytoliths from the natural environment. At least, no light/dark effect was detected on the δ18O and δ17O signature of plant water and phytoliths of F. arundinacea. However, when day/night alternations are characterized by significant changes in RH, the lowest RH conditions favoring evaporation and silica polymerization should be considered when calibrating the phytolith proxy. This study contributes to the identification of the parameters driving the δ18O and δ17O of bulk grass phytoliths. It additionally brings elements to further understand and model the δ18O and δ17O of grass leaf water, which influences the isotope signal of several processes at the soil/plant/atmosphere interface.

2019 ◽  
Vol 16 (23) ◽  
pp. 4613-4625 ◽  
Author(s):  
Anne Alexandre ◽  
Elizabeth Webb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental relative humidity (RH) is a key climate parameter, but there is a lack of quantitative RH proxies suitable for climate model–data comparisons. Recently, a combination of climate chamber and natural transect calibrations have laid the groundwork for examining the robustness of the triple oxygen isotope composition (δ′18O and 17O-excess) of phytoliths, that can preserve in sediments, as a new proxy for past changes in RH. However, it was recommended that besides RH, additional factors that may impact δ′18O and 17O-excess of plant water and phytoliths be examined. Here, the effects of grass leaf length, leaf development stage and day–night alternations are addressed from growth chamber experiments. The triple oxygen isotope compositions of leaf water and phytoliths of the grass species F. arundinacea are analysed. Evolution of the leaf water δ′18O and 17O-excess along the leaf length can be modelled using a string-of-lakes approach to which an unevaporated–evaporated mixing equation must be added. We show that for phytoliths to record this evolution, a kinetic fractionation between leaf water and silica, increasing from the base to the apex, must be assumed. Despite the isotope heterogeneity of leaf water along the leaf length, the bulk leaf phytolith δ′18O and 17O-excess values can be estimated from the Craig and Gordon model and a mean leaf water–phytolith fractionation exponent (λPhyto-LW) of 0.521. In addition to not being leaf length dependent, δ′18O and 17O-excess of grass phytoliths are expected to be impacted only very slightly by the stem vs. leaf biomass ratio. Our experiment additionally shows that because a lot of silica polymerises in grasses when the leaf reaches senescence (58 % of leaf phytoliths in mass), RH prevailing during the start of senescence should be considered in addition to RH prevailing during leaf growth when interpreting the 17O-excess of grass bulk phytoliths. Although under the study conditions 17O-excessPhyto do not vary significantly from constant day to day–night conditions, additional monitoring at low RH conditions should be done before drawing any generalisable conclusions. Overall, this study strengthens the reliability of the 17O-excess of phytoliths to be used as a proxy of RH. If future studies show that the mean value of 0.521 used for the grass leaf water–phytolith fractionation exponent λPhyto-LW is not climate dependent, then grassland leaf water 17O-excess obtained from grassland phytolith 17O-excess would inform on isotope signals of several soil–plant-atmosphere processes.


2003 ◽  
Vol 30 (10) ◽  
pp. 1059 ◽  
Author(s):  
Lucas A. Cernusak ◽  
S. Chin Wong ◽  
Graham D. Farquhar

We measured the oxygen isotope composition of both the water and dry matter components of phloem sap exported from photosynthesising Ricinus communis L. leaves. The 18O / 16O composition of exported dry matter matched almost exactly that expected for equilibrium with average lamina leaf water (leaf water exclusive of water associated with primary veins) with an isotope effect of αo=1.027, where αo=Ro / Rw , and Ro and Rw are 18O / 16O of organic molecules and water, respectively. Average lamina leaf water was enriched by 14–22‰ compared with source water under our experimental conditions, and depleted by 4–7‰, compared with evaporative site water. This showed that it is the average lamina leaf water 18O / 16O signal that is exported from photosynthesising leaves rather than a signal more closely related to that of evaporative site water or source water. Additionally, we found that water exported in phloem sap from photosynthesising leaves was enriched compared with source water; the mean phloem water enrichment observed for leaf petioles was 4.0 ± 1.5‰ (mean ± 1 s.d., n = 27). Phloem water collected from stem bases was also enriched compared with source water. However, the enrichment was approximately 0.8 times that observed for leaf petioles, suggesting some mixing between enriched phloem water and unenriched xylem water occurred during translocation. Results validated the assumption that organic molecules exported from photosynthesising leaves are enriched by 27‰ compared with average lamina leaf water. Furthermore, results suggest that the potential influence of enriched phloem water should be considered when interpreting the 18O / 16O signatures of plant organic material and plant cellulose.


2020 ◽  
Author(s):  
Martine Couapel ◽  
Corinne Sonzogni ◽  
Anne Alexandre ◽  
Florence Sylvestre

<p>Recent studies showed that the <sup>17</sup>O-excess of plant leaf biogenic silicates (phytoliths) can be used to quantify the atmospheric relative humidity occurring during leaf water transpiration. The <sup>17</sup>O-excess vs ∂<sup>18</sup>O signature of phytoliths can also be used to trace back to the signature of leaf water. In a similar way, the signature of lacustrine diatoms is expected to record the signature of the lake water in which they formed. Therefore, the triple oxygen isotope composition of biogenic silicates extracted from well-dated sedimentary cores may bring new insights for past climate and hydrological reconstructions. However, for high time-resolution reconstructions, we need to be able to measure microsamples (300 to 800 µg) of biogenic silica. In another context, the triple oxygen isotope composition of micro-meteorites constitutes an efficient tool to determine their parent-body. In this case too, micro-samples need to be handled.</p><p>Here we report the results of new ∂<sup>18</sup>O and ∂<sup>17</sup>O measurements of macro- and micro-samples of international and laboratory silicate standards (e.g. NBS28 quartz, San Carlos Olivine, Boulangé quartz, MSG phytoliths and PS diatoms). Molecular O<sub>2</sub> is extracted from silica and purified in a laser-fluorination line, passed through a 114°C slush to condense potential interfering gasses and sent to the dual-inlet Isotope Ratio Mass Spectrometer (IRMS) Thermo-Scientific Delta V. In order to get sufficient 34/32 and 33/32 signals for microsamples the O<sub>2</sub> gas is concentrated within the IRMS in an additional auto-cooled 800 ml microvolume tube filled with silica gel. Accuracy and reproducibility of the ∂<sup>18</sup>O, ∂<sup>17</sup>O and <sup>17</sup>O excess measurements are assessed. Attention is payed to determine the concentration from which O<sub>2</sub> gas yields offsets in ∂<sup>18</sup>O, ∂<sup>17</sup>O and <sup>17</sup>O-excess are measured and whether these offsets are reproducible and can be corrected for.</p>


2015 ◽  
Vol 112 (17) ◽  
pp. 5337-5341 ◽  
Author(s):  
Daniel Herwartz ◽  
Andreas Pack ◽  
Dmitri Krylov ◽  
Yilin Xiao ◽  
Karlis Muehlenbachs ◽  
...  

The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition (17O/16O, 18O/16O) of Proterozoic rocks to reconstruct the 18O/16O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3–2.4 gigayears ago (Ga)] snowball Earth, δ18O = −43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low 18O/16O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme 18O depletion. For a Neoproterozoic (∼0.6–0.7 Ga) snowball Earth, higher meltwater δ18O estimates of −21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how 17O/16O measurements provide information beyond traditional 18O/16O measurements, even though all fractionation processes are purely mass dependent.


2017 ◽  
Author(s):  
Anne Alexandre ◽  
Amarelle Landais ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity (RH) is a key climate-parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility to make model-data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess = ln (δ17O + 1) − 0.528 × ln (δ18O + 1)), in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 %) in a growth chamber experiment where transpiration reached a steady state. Decreasing RH decreases the 17O-excess of phytoliths by 4.1 per meg / % as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and continuous measurements of the triple isotope composition of water vapor. Then, we measured the 17O-excess of 57 phytolith assemblages collected from top soils along a RH and vegetation transect in inter-tropical West and Central Africa. Although scattered, the 17O-excess of phytoliths decreases with RH by 3.4 per meg / %. The similarity of the trends observed in the growth chamber and nature supports that RH is an important control of 17O-excess of phytoliths in the natural environment. However, other parameters such as changes in the triple isotope composition of the soil water or phytolith origin in the leaf tissue may come into play. Assessment of these parameters through additional growth chambers experiments and field campaigns will bring us closer to an accurate proxy of changes in relative humidity.


2020 ◽  
Author(s):  
Anne Alexandre ◽  
Clément Outrequin ◽  
Christine Vallet-Coulomb ◽  
Amaelle Landais ◽  
Clément Piel ◽  
...  

<p>The oxygen isotope signature of leaf water is used to trace several processes at the soil-plant-atmosphere interface. During photosynthesis, it is transferred to the oxygen isotope signature of atmospheric CO<sub>2</sub> and O<sub>2</sub>, which can be used for reconstructing past changes in gross primary production. The oxygen isotope signature of leaf water additionally imprints leaf organic and mineral compounds, such as phytoliths, used as paleoclimate and paleovegetation proxies when extracted from sedimentary materials.</p><p>Numerous experimental and modelling studies were dedicated to constrain the main parameters responsible for changes in the δ<sup>18</sup>O of leaf water. Although these models usually correctly depict the main trends of <sup>18</sup>O-enrichment of the leaf water when relative humidity decreases, the calculated absolute values often depart from the observed ones by several ‰. Moreover, the δ<sup>18</sup>O of leaf water absorbed by plants is dependent on the δ<sup>18</sup>O value of meteoric and soil waters that can vary by several ‰ at different space and time scales. These added uncertainties make our knowledge of the parameters responsible for changes in the δ<sup>18</sup>O of leaf water and phytoliths flawed.</p><p>Changes in the triple oxygen isotope composition of leaf water, expressed by the <sup>17</sup>O-excess, are controlled by fewer variables than changes in δ<sup>18</sup>O. In meteoric water the <sup>17</sup>O-excess varies slightly as it is weakly affected by temperature or phase changes during air mass transport. This makes the soil water fed by meteoric water and the atmospheric vapour in equilibrium with meteoric water changing little from a place to another. Hence the <sup>17</sup>O-excess of leaf water is essentially controlled by the evaporative fractionation. The latest depends on the ratio of vapor pressure in the air to vapor pressure in the stomata intercellular space, close to relative humidity. Leaf water evaporative fractionation can lead to <sup>17</sup>O-excess negative values that can exceed most of surficial water ones.</p><p>Here we present the outcomes of several recent growth chamber and field studies, for the purpose of i) refining the grass leaf water and phytoliths δ<sup>18</sup>O and <sup>17</sup>O-excess modelling, ii) assessing whether the δ<sup>18</sup>O and <sup>17</sup>O-excess of grass leaf water can be reconstructed from phytoliths, and iii) examining the precision of the <sup>17</sup>O-excess of phytoliths as a new proxy for past changes in continental atmospheric relative humidity. Atmospheric continental relative humidity is an important climate parameter poorly constrained in global climate models. A model-data comparison approach, applicable beyond the instrumental period, is essential to progress on this issue. However, there is currently a lack of proxies allowing quantitative reconstruction of past continental relative humidity. The <sup>17</sup>O-excess signature of phytoliths could fill this gap.</p>


2018 ◽  
Vol 15 (10) ◽  
pp. 3223-3241 ◽  
Author(s):  
Anne Alexandre ◽  
Amarelle Landais ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity (RH) is a key climate parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor, which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility of making model–data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess = ln (δ17O + 1) – 0.528 × ln (δ18O + 1)), in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 %) in a growth chamber experiment where transpiration reached a steady state. Decreasing RH from 80 to 40 % decreases the 17O-excess of phytoliths by 4.1 per meg/% as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and continuous measurements of the triple isotope composition of water vapor. Then, we measured the 17O-excess of 57 phytolith assemblages collected from top soils along a RH and vegetation transect in inter-tropical West and Central Africa. Although scattered, the 17O-excess of phytoliths decreases with RH by 3.4 per meg/%. The similarity of the trends observed in the growth chamber and nature supports that RH is an important control of 17O-excess of phytoliths in the natural environment. However, other parameters such as changes in the triple isotope composition of the soil water or phytolith origin in the plant may come into play. Assessment of these parameters through additional growth chambers experiments and field campaigns will bring us closer to an accurate proxy of changes in relative humidity.


2020 ◽  
Author(s):  
Getachew Agmuas Adnew ◽  
Thijs L. Pons ◽  
Gerbrand Koren ◽  
Wouter Peters ◽  
Thomas Röckmann

Abstract. Understanding the processes that affect the triple oxygen isotope composition of atmospheric CO2 during gas exchange can help constrain the interaction and fluxes between the atmosphere and the biosphere. We conducted leaf cuvette experiments under controlled conditions, using three plant species. The experiments were conducted at two different light intensities and using CO2 with different 17O-excess. The oxygen isotope composition of CO2 was used to estimate cm, the mole fraction of CO2 at the CO2-H2O exchange site. Our results demonstrate that two key factors determine the effect of gas exchange on the Δ17O of atmospheric CO2. The relative difference between Δ17O of the CO2 entering the leaf and the CO2 in equilibrium with leaf water, and the back-diffusion flux of CO2 from the leaf to the atmosphere, which can be quantified by the cm/ca ratio where ca is the CO2 mole fraction in the surrounding air. At low cm/ca ratio the discrimination is governed mainly by diffusion into the leaf, and at high cm/ca ratio by back-diffusion of CO2 that has equilibrated with the leaf water. Plants with a higher cm/ca ratio modify the Δ17O of atmospheric CO2 more strongly than plants with a lower cm/ca ratio. Based on the leaf cuvette experiments, the global value for discrimination against Δ17O of atmospheric CO2 during the photosynthetic gas exchange is estimated to be −0.57+/−0.14 ‰ using cm/ca values of 0.3 and 0.7 for C4 and C3 plants, respectively. The main uncertainties in this global estimate arise from variation in cm/ca ratios among plants and growth conditions.


2020 ◽  
Vol 17 (14) ◽  
pp. 3903-3922
Author(s):  
Getachew Agmuas Adnew ◽  
Thijs L. Pons ◽  
Gerbrand Koren ◽  
Wouter Peters ◽  
Thomas Röckmann

Abstract. Understanding the processes that affect the triple oxygen isotope composition of atmospheric CO2 during gas exchange can help constrain the interaction and fluxes between the atmosphere and the biosphere. We conducted leaf cuvette experiments under controlled conditions using three plant species. The experiments were conducted at two different light intensities and using CO2 with different Δ17O. We directly quantify the effect of photosynthesis on Δ17O of atmospheric CO2 for the first time. Our results demonstrate the established theory for δ18O is applicable to Δ17O(CO2) at leaf level, and we confirm that the following two key factors determine the effect of photosynthetic gas exchange on the Δ17O of atmospheric CO2. The relative difference between Δ17O of the CO2 entering the leaf and the CO2 in equilibrium with leaf water and the back-diffusion flux of CO2 from the leaf to the atmosphere, which can be quantified by the cm∕ca ratio, where ca is the CO2 mole fraction in the surrounding air and cm is the one at the site of oxygen isotope exchange between CO2 and H2O. At low cm∕ca ratios the discrimination is governed mainly by diffusion into the leaf, and at high cm∕ca ratios it is governed by back-diffusion of CO2 that has equilibrated with the leaf water. Plants with a higher cm∕ca ratio modify the Δ17O of atmospheric CO2 more strongly than plants with a lower cm∕ca ratio. Based on the leaf cuvette experiments, the global value for discrimination against Δ17O of atmospheric CO2 during photosynthetic gas exchange is estimated to be -0.57±0.14 ‰ using cm∕ca values of 0.3 and 0.7 for C4 and C3 plants, respectively. The main uncertainties in this global estimate arise from variation in cm∕ca ratios among plants and growth conditions.


Sign in / Sign up

Export Citation Format

Share Document