scholarly journals Understanding the cold season Arctic surface warming trend in recent decades

Author(s):  
Rudong Zhang ◽  
Hailong Wang ◽  
Qiang Fu ◽  
Philip J. Rasch ◽  
Mingxuan Wu ◽  
...  
2020 ◽  
Author(s):  
Lili Ren ◽  
Yang Yang ◽  
Hailong Wang ◽  
Rudong Zhang ◽  
Pinya Wang ◽  
...  

Abstract. Observations show that the concentrations of Arctic sulfate and black carbon (BC) aerosols have declined since the early 1980s, which potentially contributed to the recent rapid Arctic warming. In this study, a global aerosol-climate model equipped with an Explicit Aerosol Source Tagging (CAM5-EAST) is applied to quantify the source apportionment of aerosols in the Arctic from sixteen source regions and the role of aerosol variations in the Arctic surface temperature change over the past four decades (1980–2018). The CAM5-EAST simulated surface concentrations of sulfate and BC in the Arctic had a decrease of 43 % and 23 %, respectively, in 2014–2018 relative to 1980–1984, mainly due to the reduction of emissions from Europe, Russia and Arctic local sources. Increases in emissions from South and East Asia led to positive trends of Arctic sulfate and BC in the upper troposphere. Changes in radiative forcing of sulfate and BC through aerosol-radiation interactions are found to exert a +0.145 K Arctic surface warming during 2014–2018 with respect to 1980–1984, with the largest contribution (61 %) by sulfate decrease, especially originating from the mid-latitude regions. The changes in atmospheric BC outside the Arctic produced an Arctic warming of +0.062 K, partially offset by −0.005 K of cooling due to atmospheric BC within the Arctic and −0.041 K related to the weakened snow/ice albedo effect of BC. Through aerosol-cloud interactions, the sulfate reduction gave an Arctic warming of +0.193 K between the first and last five years of 1980–2018, the majority of which is due to the mid-latitude emission change. Our results suggest that changes in aerosols over the mid-latitudes of the Northern Hemisphere have a larger impact on Arctic temperature than other regions associated with enhanced poleward heat transport from the aerosol-induced stronger meridional temperature gradient. The combined aerosol effects of sulfate and BC together produce an Arctic surface warming of +0.297 K during 1980–2018, explaining approximately 20 % of the observed Arctic warming during the same time period.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2015 ◽  
Vol 15 (23) ◽  
pp. 13777-13786 ◽  
Author(s):  
X. Guan ◽  
J. Huang ◽  
R. Guo ◽  
H. Yu ◽  
P. Lin ◽  
...  

Abstract. As climate change has occurred over east Asia since the 1950s, intense interest and debate have arisen concerning the contribution of human activities to the observed warming in past decades. In this study, we investigate regional surface temperature change during the boreal cold season using a recently developed methodology that can successfully identify and separate the dynamically induced temperature (DIT) and radiatively forced temperature (RFT) changes in raw surface air temperature (SAT) data. For regional averages, DIT and RFT contribute 44 and 56 % to the SAT over east Asia, respectively. The DIT changes dominate the SAT decadal variability and are mainly determined by internal climate variability, represented by the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). Radiatively forced SAT changes have made a major contribution to the global-scale warming trend and the regional-scale enhanced semi-arid warming (ESAW). Such enhanced warming is also found in radiatively forced daily maximum and minimum SAT. The long-term global-mean SAT warming trend is mainly related to radiative forcing produced by global well-mixed greenhouse gases. The regional anthropogenic radiative forcing, however, caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities. Finally, the relationship between the so-called "global warming hiatus" and regional enhanced warming is discussed.


2020 ◽  
Author(s):  
Lingling Suo ◽  
Yongqi Gao ◽  
Guillaume Gastineau ◽  
Yu-Chiao Liang ◽  
Rohit Ghosh ◽  
...  

<p>The Arctic amplified warming under global warming is one of the prominent climate change events during the past several decades. Arctic sea ice retreat contributed the majority of the near-surface warming, and little to the mid-troposphere warming. The remote factors might contribute to or modulate the aloft Arctic warming.</p><p>Here we performed a multi-model joint-analysis to study the role of the Pacific decadal oscillation, which is one of the most important recurring ocean-atmosphere variability in the climate system, in the tropospheric Arctic warming. In the multi-model simulation, PDO reduced the Arctic warming trend during 1979-2013 significantly in spring, Autumn and early winter season from the near-surface to the upper troposphere. The reduction of warming reaches 0.3 / 0.2 °C per decade in the upper / lower troposphere.</p>


2009 ◽  
Vol 36 (19) ◽  
Author(s):  
Timothy J. Garrett ◽  
Melissa M. Maestas ◽  
Steven K. Krueger ◽  
Clinton T. Schmidt

2008 ◽  
Vol 21 (4) ◽  
pp. 705-715 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang

Abstract A method is presented to assess the influence of changes in Arctic cloud cover on the surface temperature trend, allowing for a more robust diagnosis of causes for surface warming or cooling. Seasonal trends in satellite-derived Arctic surface temperature under clear-, cloudy-, and all-sky conditions are examined for the period 1982–2004. The satellite-derived trends are in good agreement with trends in the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis product and surface-based weather station measurements in the Arctic. Surface temperature trends under clear and cloudy conditions have patterns similar to the all-sky trends, though the magnitude of the trends under cloudy conditions is smaller than those under clear-sky conditions, illustrating the negative feedback of clouds on the surface temperature trends. The all-sky surface temperature trend is divided into two parts: the first part is a linear combination of the surface temperature trends under clear and cloudy conditions; the second part is caused by changes in cloud cover as a function of the clear–cloudy surface temperature difference. The relative importance of these two components is different in the four seasons, with the first part more important in spring, summer, and autumn, but with both parts being equally important in winter. The contribution of biases in satellite retrievals is also evaluated.


2012 ◽  
Vol 12 (12) ◽  
pp. 5391-5398 ◽  
Author(s):  
J. Huang ◽  
X. Guan ◽  
F. Ji

Abstract. This study examined surface air temperature trends over global land from 1901–2009. It is found that the warming trend was particularly enhanced, in the boreal cold season (November to March) over semi-arid regions (with precipitation of 200–600 mm yr−1) showing a temperature increase of 1.53 °C as compared to the global annual mean temperature increase of 1.13 °C over land. In mid-latitude semi-arid areas of Europe, Asia, and North America, temperatures in the cold season increased by 1.41, 2.42, and 1.5 °C, respectively. The semi-arid regions contribute 44.46% to global annual-mean land-surface temperature trend. The mid-latitude semi-arid regions in the Northern Hemisphere contribute by 27.0% of the total, with the mid-latitude semi-arid areas in Europe, Asia, and North America accounting for 6.29%, 13.81%, and 6.85%, respectively. Such enhanced semi-arid warming (ESAW) imply drier and warmer trend of these regions.


Sign in / Sign up

Export Citation Format

Share Document