Freshwater Transport in the Scotian Shelf and its Impacts on the Gulf of Maine Salinity

Author(s):  
Zhengui Wang ◽  
Denghui Li ◽  
Huijie Xue ◽  
Andrew C. Thomas ◽  
Yinglong J. Zhang ◽  
...  
Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Andrew C. Thomas ◽  
Andrew J. Pershing ◽  
Kevin D. Friedland ◽  
Janet A. Nye ◽  
Katherine E. Mills ◽  
...  

The northeastern North American continental shelf from Cape Hatteras to the Scotian Shelf is a region of globally extreme positive trends in sea surface temperature (SST). Here, a 33-year (1982–2014) time series of daily satellite SST data was used to quantify and map spatial patterns in SST trends and phenology over this shelf. Strongest trends are over the Scotian Shelf (>0.6°C decade–1) and Gulf of Maine (>0.4°C decade–1) with weaker trends over the inner Mid-Atlantic Bight (~0.3°C decade–1). Winter (January–April) trends are relatively weak, and even negative in some areas; early summer (May–June) trends are positive everywhere, and later summer (July–September) trends are strongest (~1.0°C decade–1). These seasonal differences shift the phenology of many metrics of the SST cycle. The yearday on which specific temperature thresholds (8° and 12°C) are reached in spring trends earlier, most strongly over the Scotian Shelf and Gulf of Maine (~ –0.5 days year–1). Three metrics defining the warmest summer period show significant trends towards earlier summer starts, later summer ends and longer summer duration over the entire study region. Trends in start and end dates are strongest (~1 day year–1) over the Gulf of Maine and Scotian Shelf. Trends in increased summer duration are >2.0 days year–1 in parts of the Gulf of Maine. Regression analyses show that phenology trends have regionally varying links to the North Atlantic Oscillation, to local spring and summer atmospheric pressure and air temperature and to Gulf Stream position. For effective monitoring and management of dynamically heterogeneous shelf regions, the results highlight the need to quantify spatial and seasonal differences in SST trends as well as trends in SST phenology, each of which likely has implications for the ecological functioning of the shelf.


2018 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel

Abstract. The circulation in the northwestern North Atlantic Ocean is highly complex, characterized by the confluence of two major western boundary current systems and several shelf currents. Here we present the first comprehensive analysis of transport paths and timescales for the northwestern North Atlantic shelf, which is useful for estimating ventilation rates, describing circulation and mixing, characterizing the composition of water masses with respect to different source regions, and elucidating rates and patterns of biogeochemical processing, species dispersal and genetic connectivity. Our analysis uses dye and age tracers within a high-resolution circulation model of the region, divided into 9 sub-regions, to diagnose retention times, transport pathways, and transit times. Retention times are shortest on the Scotian Shelf (~ 3 months) where the inshore and shelf-break branches of the coastal current system result in high along-shelf transport to the southwest. Larger retention times are simulated on the Grand Banks (~ 4 months), in the Gulf of St. Lawrence (~ 12 months) and the Gulf of Maine (~ 6 months). Source water analysis shows that Scotian Shelf water is primarily comprised of waters from the Grand Banks and Gulf of St. Lawrence, with varying composition across the shelf. Contributions from the Gulf of St. Lawrence are larger at near-shore locations, whereas locations near the shelf break have larger contributions from the Grand Banks and slope waters. Waters from the deep slope have little connectivity with the shelf, because the shelf-break current inhibits transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters are therefore dominant controls on biogeochemical properties, and on setting and sustaining planktonic communities on the Scotian Shelf.


2008 ◽  
Vol 30 (12) ◽  
pp. 1399-1416 ◽  
Author(s):  
Rubao Ji ◽  
Cabell S. Davis ◽  
Changsheng Chen ◽  
David W. Townsend ◽  
David G. Mountain ◽  
...  

<i>Abstract</i>.—Zooplankton communities perform a critical role as secondary producers in marine ecosystems. They are vulnerable to climate-induced changes in the marine environment, including temperature, stratification, and circulation, but the effects of these changes are difficult to discern without sustained ocean monitoring. The physical, chemical, and biological environment of the Gulf of Maine, including Georges Bank, is strongly influenced by inflow from the Scotian Shelf and through the Northeast Channel, and thus observations both in the Gulf of Maine and in upstream regions are necessary to understand plankton variability and change in the Gulf of Maine. Large-scale, quasi synoptic plankton surveys have been performed in the Gulf of Maine since Bigelow’s work at the beginning of the 20th century. More recently, ongoing plankton monitoring efforts include Continuous Plankton Recorder sampling in the Gulf of Maine and on the Scotian Shelf, U.S. National Marine Fisheries Service’s MARMAP (Marine Resources Monitoring, Assessment, and Prediction) and EcoMon (Ecosystem Monitoring) programs sampling the northeast U.S. Continental Shelf, including the Gulf of Maine, and Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program on the Scotian Shelf and in the eastern Gulf of Maine. Here, we review and compare past and ongoing zooplankton monitoring programs in the Gulf of Maine region, including Georges Bank and the western Scotian Shelf, to facilitate retrospective analysis and broadscale synthesis of zooplankton dynamics in the Gulf of Maine. Additional sustained sampling at greater-than-monthly frequency at selected sites in the Gulf of Maine would be necessary to detect changes in phenology (i.e. seasonal timing of biological events). Sustained zooplankton sampling in critical nearshore fish habitats and in key feeding areas for upper trophic level organisms, such as marine mammals and seabirds, would yield significant insights into their dynamics. The ecosystem dynamics of the Gulf of Maine are strongly influenced by large-scale forcing and variability in upstream inflow. Improved coordination of sampling and data analysis among monitoring programs, effective data management, and use of multiple modeling approaches will all enhance the mechanistic understanding of the structure and function of the Gulf of Maine pelagic ecosystem.


2016 ◽  
Vol 46 (11) ◽  
pp. 3279-3298 ◽  
Author(s):  
Anna Katavouta ◽  
Keith R. Thompson ◽  
Youyu Lu ◽  
John W. Loder

AbstractAs part of a broader study of ocean downscaling, the seasonal and tidal variability of the Gulf of Maine and Scotian shelf, and their dynamical interaction, are investigated using a high-resolution (1/36°) circulation model. The model’s seasonal hydrography and circulation, and its tidal elevations and currents, are compared with an observed seasonal climatology, local observations, and results from previous studies. Numerical experiments with and without density stratification demonstrate the influence of stratification on the tides. The model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current that occur over, and to the north of, Georges Bank. The model generates a striation pattern of alternating highs and lows, aligned with Georges Bank, in the M2 surface summer maximum speed in the Gulf of Maine. The striations are consistent with observations by a high-frequency coastal radar system and can be explained in terms of a linear superposition of the barotropic tide and the first-mode baroclinic tide, generated on the north side of Georges Bank, as it propagates into the Gulf of Maine. The seasonal changes in tidal currents in the well-mixed area on Georges Bank are due to a combination of increased sea level gradients, and lower vertical viscosity, in summer.


1989 ◽  
Vol 67 (6) ◽  
pp. 1411-1420 ◽  
Author(s):  
L. D. Murison ◽  
D. E. Gaskin

Temperature, salinity, density of Zooplankton patches, and the abundance of right whales (Eubalaena glacialis glacialis) were measured concurrently during summer and autumn of 1983 and 1984 over the Grand Manan Basin, outer Bay of Fundy. Right whales appeared to exploit patches of copepods at densities greater than about 820/m3 (170 mg m−3). Patches were composed primarily of stage V Calanus finmarchicus at depths ≥ 100 m during daylight hours. Patch densities were similar in 1983 and 1984. Potential right whale feeding areas increased in extent from late July to October, with at least two peaks of copepod biomass occurring in 1984. Right whales appear to exploit euphausiid patches in the bay only incidentally; the whales departed in 1984 when euphausiid biomass was at a maximum. The topography of the basin, prevailing summer currents, and orientation of transition zones from mixed to stratified water all combine to facilitate accumulation of copepods from the Scotian Shelf and Gulf of Maine in the central lower Bay of Fundy. This area provides an important feeding ground for this stenophagous whale species.


Sign in / Sign up

Export Citation Format

Share Document