Ring shedding in the Agulhas Current System

1992 ◽  
Vol 97 (C6) ◽  
pp. 9467 ◽  
Author(s):  
Raymond C. V. Feron ◽  
Wilhelmus P. M. De Ruijter ◽  
Dick Oskam
2019 ◽  
Vol 12 (7) ◽  
pp. 3329-3355 ◽  
Author(s):  
Franziska U. Schwarzkopf ◽  
Arne Biastoch ◽  
Claus W. Böning ◽  
Jérôme Chanut ◽  
Jonathan V. Durgadoo ◽  
...  

Abstract. The Agulhas Current, the western boundary current of the South Indian Ocean, has been shown to play an important role in the connectivity between the Indian and Atlantic oceans. The greater Agulhas Current system is highly dominated by mesoscale dynamics. To investigate their influence on the regional and global circulations, a family of high-resolution ocean general circulation model configurations based on the NEMO code has been developed. Horizontal resolution refinement is achieved by embedding “nests” covering the South Atlantic and the western Indian oceans at 1/10∘ (INALT10) and 1/20∘ (INALT20) within global hosts with coarser resolutions. Nests and hosts are connected through two-way interaction, allowing the nests not only to receive boundary conditions from their respective host but also to feed back the impact of regional dynamics onto the global ocean. A double-nested configuration at 1/60∘ resolution (INALT60) has been developed to gain insights into submesoscale processes within the Agulhas Current system. Large-scale measures such as the Drake Passage transport and the strength of the Atlantic meridional overturning circulation are rather robust among the different configurations, indicating the important role of the hosts in providing a consistent embedment of the regionally refined grids into the global circulation. The dynamics of the Agulhas Current system strongly depend on the representation of mesoscale processes. Both the southward-flowing Agulhas Current and the northward-flowing Agulhas Undercurrent increase in strength with increasing resolution towards more realistic values, which suggests the importance of improving mesoscale dynamics as well as bathymetric slopes along this narrow western boundary current regime. The exploration of numerical choices such as lateral boundary conditions and details of the implementation of surface wind stress forcing demonstrates the range of solutions within any given configuration.


1978 ◽  
Vol 25 (6) ◽  
pp. 543-548 ◽  
Author(s):  
T.F.W. Harris ◽  
R. Legeckis ◽  
D. van Forest

2019 ◽  
Vol 11 (13) ◽  
pp. 1576 ◽  
Author(s):  
Arielle Stela Imbol Nkwinkwa N. ◽  
Mathieu Rouault ◽  
Johnny A. Johannessen

In-situ observation, climate reanalyses, and satellite remote sensing are used to study the annual cycle of turbulent latent heat flux (LHF) in the Agulhas Current system. We assess if the datasets do represent the intense exchange of moisture that occurs above the Agulhas Current and the Retroflection region, especially the new reanalyses as the former, the National Centers for Environmental Prediction Reanalysis 2 (NCEP2) and the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis second-generation reanalysis (ERA-40) have lower sea and less distinct surface temperature (SST) in the Agulhas Current system due to their low spatial resolution thus do not adequately represent the Agulhas Current LHF. We use monthly fields of LHF, SST, surface wind speed, saturated specific humidity at the sea surface (Qss), and specific humidity at 10 m (Qa). The Climate Forecast System Reanalysis (CFSR), the European Centre for Medium-Range Weather Forecast fifth generation (ERA-5), and the Modern-Era Retrospective analysis for Research and Applications version-2 (MERRA-2) are similar to the air–sea turbulent fluxes (SEAFLUX) and do represent the signature of the Agulhas Current. ERA-Interim underestimates the LHF due to lower surface wind speeds than other datasets. The observation-based National Oceanography Center Southampton (NOCS) dataset is different from all other datasets. The highest LHF of 250 W/m2 is found in the Retroflection in winter. The lowest LHF (~100 W/m2) is off Port Elizabeth in summer. East of the Agulhas Current, Qss-Qa is the main driver of the amplitude of the annual cycle of LHF, while it is the wind speed in the Retroflection and both Qss-Qa and wind speed in between. The difference in LHF between product are due to differences in Qss-Qa wind speed and resolution of datasets.


Author(s):  
S. Ponce de León ◽  
C. Guedes Soares ◽  
J.A. Johannessen

2017 ◽  
Vol 47 (8) ◽  
pp. 2077-2100 ◽  
Author(s):  
Lionel Renault ◽  
James C. McWilliams ◽  
Pierrick Penven

AbstractCoupled ocean–atmosphere simulations are carried out for the Mozambique Channel, the Agulhas Current system, and the Benguela upwelling system to assess the ocean surface current feedback to the atmosphere and its impact on the Agulhas Current (AC) retroflection and leakage. Consistent with previous studies, the authors show that the current feedback slows down the oceanic mean circulation and acts as an oceanic eddy killer by modulating the energy transfer between the atmosphere and the ocean, reducing by 25% the mesoscale energy and inducing a pathway of energy transfer from the ocean to the atmosphere. The current feedback, by dampening the eddy kinetic energy (EKE), shifts westward the distribution of the AC retroflection location, reducing the presence of eastern retroflections in the simulations and improving the realism of the AC simulation. By modulating the EKE, the AC retroflection and the Good Hope jet intensity, the current feedback allows a larger AC leakage (by 21%), altering the water masses of the Benguela system. Additionally, the eddy shedding is shifted northward and the Agulhas rings propagate less far north in the Atlantic. The current–wind coupling coefficient sw is not spatially constant: a deeper marine boundary layer induces a weaker sw. Finally the results indicate that the submesoscale currents may also be weakened by the current feedback.


2006 ◽  
Vol 33 (17) ◽  
Author(s):  
P. Penven ◽  
J. R. E. Lutjeharms ◽  
P. Florenchie

2009 ◽  
Vol 36 (12) ◽  
Author(s):  
Mathieu Rouault ◽  
Pierrick Penven ◽  
Benjamin Pohl

2020 ◽  
Vol 50 (9) ◽  
pp. 2573-2589 ◽  
Author(s):  
René Schubert ◽  
Jonathan Gula ◽  
Richard J. Greatbatch ◽  
Burkard Baschek ◽  
Arne Biastoch

AbstractMesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed layer baroclinic instabilities and one does not. When mixed layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in wintertime in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas ring path, the forward cascade changes to an inverse cascade at a typical scale of mixed layer eddies (15 km). At the same scale, the largest sources of the upscale flux occur. After the winter, the maximum of the upscale flux shifts to larger scales. Depending on the region, the kinetic energy reaches the mesoscales in spring or early summer aligned with the maximum of mesoscale kinetic energy. This indicates the importance of submesoscale flows for the mesoscale seasonal cycle. A case study shows that the underlying process is the mesoscale absorption of mixed layer eddies. When mixed layer baroclinic instabilities are not included in the simulation, the open-ocean upscale cascade in the Agulhas ring path is almost absent. This contributes to a 20% reduction of surface kinetic energy at mesoscales larger than 100 km when submesoscale dynamics are not resolved by the model.


Sign in / Sign up

Export Citation Format

Share Document