Analytical models of steady state organic species transport in the vadose zone with kinetically controlled volatilization and dissolution

1993 ◽  
Vol 29 (10) ◽  
pp. 3343-3356 ◽  
Author(s):  
Jacob Zaidel ◽  
David Russo
2009 ◽  
Vol 73 (20) ◽  
pp. 6052-6064 ◽  
Author(s):  
T.L. Ku ◽  
S. Luo ◽  
S.J. Goldstein ◽  
M.T. Murrell ◽  
W.L. Chu ◽  
...  

2020 ◽  
Vol 26 (15-16) ◽  
pp. 1319-1329
Author(s):  
Marcelo A Ceballos ◽  
José E Stuardi

This paper begins with a brief compilation of analytical models typically used to calculate the dynamic response of a conductor span belonging to an overhead transmission line, with a Stockbridge-type damper located near one of its ends. In most of analyses found in the literature, the calculation of the response is done through the superposition of waves that propagate in both longitudinal directions impinging and reflecting at the span ends and at the damper attachment points. The approach proposed in this paper allows obtaining the response as the steady-state solution of the governing differential equations providing suitable analytical expressions for conductors with bending stiffness, which are dispersive media for propagating waves. Using these analytical solutions, the influence of bending stiffness on the efficiency and on the optimal mechanical impedance of the damper, which are of great importance in damper design, can be described explicitly. At the same time, the proposed methodology avoids the need of numerical models or approximate formulas to calculate the bending strains in critical points of the conductor with a single damper.


1987 ◽  
Vol 109 (3) ◽  
pp. 218-225 ◽  
Author(s):  
R. Kress ◽  
R. Roemer

The object of this study was to devise a unified method for comparing different thermal techniques for the estimation of blood perfusion rates and to perform a comparison for several common techniques. The approach used was to develop analytical models for the temperature response for all combinations of five power deposition geometries (spherical, one- and two-dimensional cylindrical, and one- and two-dimensional Gaussian) and three transient heating techniques (temperature pulse-decay, temperature step function, and constant-power heat-up) plus one steady-state heating technique. The transient models were used to determine the range of times (the time window) when a significant portion of the transient temperature response was due to blood perfusion. This time window was defined to begin when the difference between the conduction-only and the conduction-plus-blood flow transient temperature (or power) responses exceeded a specified value, and to end when the conduction-plus-blood flow transient temperature (or power) reached a specified fraction of its steady-state value. The results are summarized in dimensionless plots showing the size of the time windows for each of the transient perfusion estimation techniques. Several conclusions were drawn, in particular: (a) low perfusions are difficult to estimate because of the dominance of conduction, (b) large heated regions are better suited for estimation of low perfusions, (c) noninvasive heating techniques are superior because they have the potential to minimize conduction effects, and (d) none of the transient techniques appears to be clearly superior to the others.


2014 ◽  
Vol 11 (14) ◽  
pp. 3721-3728 ◽  
Author(s):  
J. Y. Tang ◽  
W. J. Riley

Abstract. Representation of gaseous diffusion in variably saturated near-surface soils is becoming more common in land biogeochemical models, yet the formulations and numerical solution algorithms applied vary widely. We present three different but equivalent formulations of the dual-phase (gaseous and aqueous) tracer diffusion transport problem that is relevant to a wide class of volatile tracers in land biogeochemical models. Of these three formulations (i.e., the gas-primary, aqueous-primary, and bulk-tracer-based formulations), we contend that the gas-primary formulation is the most convenient for modeling tracer dynamics in biogeochemical models. We then provide finite volume approximation to the gas-primary equation and evaluate its accuracy against three analytical models: one for steady-state soil CO2 dynamics, one for steady-state soil CH4 dynamics, and one for transient tracer diffusion from a constant point source into two different sequentially aligned medias. All evaluations demonstrated good accuracy of the numerical approximation. We expect our result will standardize an efficient mechanistic numerical method for solving relatively simple, multi-phase, one-dimensional diffusion problems in land models.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 89 ◽  
Author(s):  
Maxime Lesur ◽  
Julien Médina ◽  
Makoto Sasaki ◽  
Akihiro Shimizu

In neutral fluids and plasmas, the analysis of perturbations often starts with an inventory of linearly unstable modes. Then, the nonlinear steady-state is analyzed or predicted based on these linear modes. A crude analogy would be to base the study of a chair on how it responds to infinitesimaly small perturbations. One would conclude that the chair is stable at all frequencies, and cannot fall down. Of course, a chair falls down if subjected to finite-amplitude perturbations. Similarly, waves and wave-like structures in neutral fluids and plasmas can be triggered even though they are linearly stable. These subcritical instabilities are dormant until an interaction, a drive, a forcing, or random noise pushes their amplitude above some threshold. Investigating their onset conditions requires nonlinear calculations. Subcritical instabilities are ubiquitous in neutral fluids and plasmas. In plasmas, subcritical instabilities have been investigated based on analytical models and numerical simulations since the 1960s. More recently, they have been measured in laboratory and space plasmas, albeit not always directly. The topic could benefit from the much longer and richer history of subcritical instability and transition to subcritical turbulence in neutral fluids. In this tutorial introduction, we describe the fundamental aspects of subcritical instabilities in plasmas, based on systems of increasing complexity, from simple examples of a point-mass in a potential well or a box on a table, to turbulence and instabilities in neutral fluids, and finally, to modern applications in magnetized toroidal fusion plasmas.


1999 ◽  
Vol 378 ◽  
pp. 357-378 ◽  
Author(s):  
T. D. FINNIGAN ◽  
G. N. IVEY

If a sill-enclosed basin, connected to a large reservoir, is suddenly subjected to a de-stabilizing surface buoyancy flux, it will first mix vertically by turbulent convection before the resulting lateral buoyancy gradient generates a horizontal exchange flow across the sill. We present a study which examines the unsteady adjustment of such a basin under continued steady forcing. It is shown, through theoretical development and laboratory experimentation, that two consecutive unsteady regimes characterized by different dynamic balances are traversed as the flow approaches a steady state.Once established the exchange flow is controlled at the sill crest where it is hydraulically critical. In the absence of a lateral contraction, the single control at the sill crest allows a range of submaximal exchange states with the flow at the sill being dependent not only on the forcing and geometrical parameters but also on mixing conditions within the basin which are, in turn, dependent on the sill exchange. The sill–basin system is therefore strongly coupled although it remains isolated from the external reservoir conditions by a region of internally supercritical flow. Results from the laboratory experiments are used to demonstrate the link between the forcing and the exchange flow at the sill. Steady-state measurements of the interior mean velocity and buoyancy fields are also compared with previous analytical models.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Luis F. Ayala H. ◽  
Ting Dong

Wellbore models are required for integrated reservoir management studies as well as optimization of production operations. Distributed temperature sensing (DTS) is a smart well technology deployed for permanent downhole monitoring. It measures temperature via fiber optic sensors installed along horizontal wellbores. Correct interpretation of DTS surveys has thus become of utmost importance and analytical models for analysis of temperature distribution behavior are critical. In this study, we first show how thermodynamic analysis can describe in detail the physical changes in terms of pressure and temperature behavior from the simplest cases of “leaky tank” to the horizontal wellbore itself. Subsequently, rigorous single-phase thermodynamic models for energy, entropy, and enthalpy changes in horizontal wellbores are derived starting from 1D conservative mass, momentum, and energy balance equations and a generalized thermal models, along with their steady-state temperature profile subsets, are presented. Steady-state applications are presented and discussed. The analysis presents the factors controlling horizontal wellbore steady-state temperature responses and demonstrates that wellbore thermal responses are neither isentropic nor isenthalpic and that the isentropic expansion-driven models and Joule–Thompson-coefficient (JTC) driven may be used interchangeably to analysis horizontal wellbore thermal responses.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
David J. Murphy ◽  
Thierry A. Blanchet

The load applied to a lead screw assembly is distributed amongst the engaged threads of its wearing nut in a manner that can range from highly nonuniform to nearly uniform. Nonuniform load distributions can arise when new or unworn threads are initially placed into service or, alternatively, in worn threads whereupon the operating conditions are changed from pre-existing conditions at steady-state wear. In threads wearing under constant conditions, nonuniform load distributions evolve to uniform load distributions with sufficient continued sliding as the most heavily loaded threads wear most rapidly, causing their loads to be redistributed to those threads less heavily loaded. Using a newly implemented discrete-thread numerical approach, an example lead screw with rigid nut and elastic screw body having flexible meshed thread pairs is modeled here to demonstrate the broad distribution of thread loads on a new lead screw assembly that gradually evolves toward uniformity as the coupled consideration of thread loading and wear depth approaches a steady-state of equal rates of thread wear. Thread load redistributions brought about by linear ramp changes in applied load, or temperature in the case of a nut/screw pair of dissimilar materials, are predicted at various rates of ramp between prior and future steady operating conditions. While showing the expected maintenance of uniform thread loading under slowly ramped conditions, this numerical approach was verified in cases of rapid ramps approaching step changes, for which existing closed-form analytical models provide agreement. At intermediate rates, this numerical model is complemented by newly expanded closed-form analytical models of both discrete- and continuous-thread types that describe asymptotic behavior during extended ramps.


Sign in / Sign up

Export Citation Format

Share Document