Thermodynamic Analysis of Thermal Responses in Horizontal Wellbores

2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Luis F. Ayala H. ◽  
Ting Dong

Wellbore models are required for integrated reservoir management studies as well as optimization of production operations. Distributed temperature sensing (DTS) is a smart well technology deployed for permanent downhole monitoring. It measures temperature via fiber optic sensors installed along horizontal wellbores. Correct interpretation of DTS surveys has thus become of utmost importance and analytical models for analysis of temperature distribution behavior are critical. In this study, we first show how thermodynamic analysis can describe in detail the physical changes in terms of pressure and temperature behavior from the simplest cases of “leaky tank” to the horizontal wellbore itself. Subsequently, rigorous single-phase thermodynamic models for energy, entropy, and enthalpy changes in horizontal wellbores are derived starting from 1D conservative mass, momentum, and energy balance equations and a generalized thermal models, along with their steady-state temperature profile subsets, are presented. Steady-state applications are presented and discussed. The analysis presents the factors controlling horizontal wellbore steady-state temperature responses and demonstrates that wellbore thermal responses are neither isentropic nor isenthalpic and that the isentropic expansion-driven models and Joule–Thompson-coefficient (JTC) driven may be used interchangeably to analysis horizontal wellbore thermal responses.

1984 ◽  
Vol 106 (3) ◽  
pp. 620-626 ◽  
Author(s):  
F. E. Romie

The exit fluid temperature responses are presented for a unit step increase in the entrance temperature of either of the fluids of a counterflow heat exchanger. The exit temperature response histories are functions of four parameters, three of which are commonly used to define the steady-state temperature distributions in the exchanger. The responses are found using a finite difference method and are represented by simple empirical equations for a range of the four parameters believed appropriate for many technical applications.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3854
Author(s):  
Salvatore Musumeci ◽  
Luigi Solimene ◽  
Carlo Stefano Ragusa

In this paper, we propose a method for the identification of the differential inductance of saturable ferrite inductors adopted in DC–DC converters, considering the influence of the operating temperature. The inductor temperature rise is caused mainly by its losses, neglecting the heating contribution by the other components forming the converter layout. When the ohmic losses caused by the average current represent the principal portion of the inductor power losses, the steady-state temperature of the component can be related to the average current value. Under this assumption, usual for saturable inductors in DC–DC converters, the presented experimental setup and characterization method allow identifying a DC thermal steady-state differential inductance profile of a ferrite inductor. The curve is obtained from experimental measurements of the inductor voltage and current waveforms, at different average current values, that lead the component to operate from the linear region of the magnetization curve up to the saturation. The obtained inductance profile can be adopted to simulate the current waveform of a saturable inductor in a DC–DC converter, providing accurate results under a wide range of switching frequency, input voltage, duty cycle, and output current values.


Author(s):  
Shane Siebenaler ◽  
Eric Tervo ◽  
Mohan Kulkarni ◽  
Sandeep Patni ◽  
Glenn Gesoff

Reliable detection of small potential leaks is a topic of significant interest for remote offshore pipelines. Potential leak cases of interest are pinhole leaks out of the bottom of the pipe due to corrosion, weld or seam cracks, or damage due to third-party contact. There are several emerging technologies that may have the potential to provide a means of detecting such leaks over long segments of underwater pipe. These technologies include distributed acoustic and distributed temperature sensing. A key element of evaluating the applicability of these systems is to characterize the behavior of leaks. It is critically important to understand how leaks behave when employing a technology that has only been previously used for other conditions. A joint-industry program was initiated to evaluate the thermal and acoustic behavior of hypothetical underwater leaks. The environments studied range from shallow, Arctic applications to deep offshore installations. Analytical models were assessed to predict the jetting behavior of simulated leaks and their near-field thermal response. This analysis was performed for both liquid and gas media. These models were validated by means of laboratory experiments. Acoustic characteristics of hypothetical liquid and gas leaks were determined by means of testing with hydrophones. This information can be leveraged by a number of technologies as the data are independent of the measurement mechanism. While the motivation of this work is to evaluate distributed fiber-optic systems, the data on leak characteristics may also provide indications on applicability of other techniques for detecting potential underwater leaks. The data from this project will allow the industry to improve the understanding of potential leaks from underwater pipelines and, hence, lay the foundation for determining appropriate detection systems.


SIAM Review ◽  
1964 ◽  
Vol 6 (2) ◽  
pp. 178-180
Author(s):  
E. Deutsch ◽  
Thomas Rogge ◽  
J. Ernest Wilkins Jr. ◽  
M. S. Klamkin

Sign in / Sign up

Export Citation Format

Share Document