scholarly journals Role of gas-surface interactions in the reduction of Ogo 6 neutral particle mass spectrometer data

1973 ◽  
Vol 78 (22) ◽  
pp. 4651-4668 ◽  
Author(s):  
A. E. Hedin ◽  
B. B. Hinton ◽  
G. A. Schmitt
2016 ◽  
Author(s):  
Camille M. Sultana ◽  
Gavin Cornwell ◽  
Paul Rodriguez ◽  
Kimberly A. Prather

Abstract. Single particle mass spectrometer (SPMS) analysis of aerosols has become increasingly popular since its invention in the 1990s. Today many iterations of commercial and lab-built SPMS are in use worldwide. However supporting analysis toolkits for these powerful instruments are either outdated, have limited functionality, or are versions that are not available to the scientific community at large. In an effort to advance this field and allow better communication and collaboration between scientists we have developed FATES (Flexible Analysis Toolkit for the Exploration of SPMS data), a MATLAB toolkit easily extensible to an array of SPMS designs and data formats. FATES was developed to minimize the computational demands of working with large datasets while still allowing easy maintenance, modification, and utilization by novice programmers. FATES permits scientists to explore, without constraint, complex SPMS data with simple scripts in a language popular for scientific numerical analysis. In addition FATES contains an array of data visualization GUIs which can aid both novice and expert users in calibration of raw data, exploration of the dependence of mass spectra characteristics on size, time, and peak intensity, as well investigations of clustered data sets.


2021 ◽  
Author(s):  
Yoshifumi Saito ◽  
Naoki Yamamoto ◽  
Shoichiro Yokota ◽  
Satoshi Kasahara

<p>In order to investigate the presence (and amount) of the water (ice) molecules in the regolith 1 to 1.5 m below the lunar surface, a compact neutral particle mass spectrometer is under development. This neutral particle mass spectrometer is designed to install on a Moon rover, and it will perform mass analysis of neutral gas generated in the heating chamber. This mass spectrometer not only aims to measure the amount of water molecules included in the lunar regolith but also identify the atoms, molecules and their isotopes up to mass number 200 with mass resolution as high as 100.</p><p>The mass spectrometer under development is a reflectron that is a Time-Of-Flight mass spectrometer. A standard reflectron consists of an ion source, ion acceleration part, free flight part, ion reflection part and an ion detector. Ionized neutral particles are accelerated in the two-stage ion acceleration part by a pulsed high voltage whose pulse timing is used as a start signal. The accelerated ions enter into the free flight part and reflected in the single-stage ion reflection part. Reflected ions again fly through the free flight part and detected by a detector. Ion mass is determined by the time difference between the start signal and the particle detection.</p><p>In order to increase the mass resolution as much as possible within the allocated volume, we have decided to modify the standard reflectron by adding a second reflector that enables triple reflections and doubles the flight length. This newly designed triple-reflection TOF mass spectrometer can be operated also as a standard reflectron by changing the electric field configuration. Since the triple-reflection reduces the detection efficiency while increasing the mass resolution, the single reflection mode is used as a complementary mode where the detection efficiency is higher while the mass resolution is lower.</p><p>  </p>


2017 ◽  
Vol 10 (4) ◽  
pp. 1323-1334 ◽  
Author(s):  
Camille M. Sultana ◽  
Gavin C. Cornwell ◽  
Paul Rodriguez ◽  
Kimberly A. Prather

Abstract. Single-particle mass spectrometer (SPMS) analysis of aerosols has become increasingly popular since its invention in the 1990s. Today many iterations of commercial and lab-built SPMSs are in use worldwide. However, supporting analysis toolkits for these powerful instruments are outdated, have limited functionality, or are versions that are not available to the scientific community at large. In an effort to advance this field and allow better communication and collaboration between scientists, we have developed FATES (Flexible Analysis Toolkit for the Exploration of SPMS data), a MATLAB toolkit easily extensible to an array of SPMS designs and data formats. FATES was developed to minimize the computational demands of working with large data sets while still allowing easy maintenance, modification, and utilization by novice programmers. FATES permits scientists to explore, without constraint, complex SPMS data with simple scripts in a language popular for scientific numerical analysis. In addition FATES contains an array of data visualization graphic user interfaces (GUIs) which can aid both novice and expert users in calibration of raw data; exploration of the dependence of mass spectral characteristics on size, time, and peak intensity; and investigations of clustered data sets.


Author(s):  
Christian Siemes ◽  
Stephen Maddox ◽  
Olivier Carraz ◽  
Trevor Cross ◽  
Steven George ◽  
...  

AbstractCold Atom technology has undergone rapid development in recent years and has been demonstrated in space in the form of cold atom scientific experiments and technology demonstrators, but has so far not been used as the fundamental sensor technology in a science mission. The European Space Agency therefore funded a 7-month project to define the CASPA-ADM mission concept, which serves to demonstrate cold-atom interferometer (CAI) accelerometer technology in space. To make the mission concept useful beyond the technology demonstration, it aims at providing observations of thermosphere mass density in the altitude region of 300–400 km, which is presently not well covered with observations by other missions. The goal for the accuracy of the thermosphere density observations is 1% of the signal, which will enable the study of gas–surface interactions as well as the observation of atmospheric waves. To reach this accuracy, the CAI accelerometer is complemented with a neutral mass spectrometer, ram wind sensor, and a star sensor. The neutral mass spectrometer data is considered valuable on its own since the last measurements of atmospheric composition and temperature in the targeted altitude range date back to 1980s. A multi-frequency GNSS receiver provides not only precise positions, but also thermosphere density observations with a lower resolution along the orbit, which can be used to validate the CAI accelerometer measurements. In this paper, we provide an overview of the mission concept and its objectives, the orbit selection, and derive first requirements for the scientific payload.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


1998 ◽  
Vol 11 (2) ◽  
pp. 1057-1064
Author(s):  
P.R. Mahaffy ◽  
S.K. Atreya ◽  
H.B. Niemann ◽  
T.C. Owen

AbstractInsights into both the detailed composition of Jupiter’s atmosphere and unexpected local meteorological phenomena were revealed by in-situ measurements from the Galileo Probe Neutral Mass Spectrometer taken on December 7, 1995. Measurements of the neutral atmospheric composition from a pressure of 0.5 bar to approximately 21 bar revealed the mixing ratios of the major species helium and hydrogen as well as numerous minor constituents including methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. This instrument measured the isotope ratios3He/4He, D/H, and13C/12C as well as the isotopes of neon, argon, krypton, and xenon. A summary is given of progress that has been made in refining preliminary estimates of the abundances of condensable volatiles and noble gases as a result of an ongoing laboratory study using a nearly identical engineering unit. The depletion of simple condensable species to depths well below their expected condensation levels is explained by a local downdraft in the region of the probe entry. The mass spectrometer data suggests that different species may recover at different depths and this may be due to lateral mixing of Jovian air.


Sign in / Sign up

Export Citation Format

Share Document