Dispersion of very long-period rayleigh waves along the East Pacific Rise: Evidence for S wave velocity anomalies to 450 km depth

1982 ◽  
Vol 87 (B10) ◽  
pp. 8631 ◽  
Author(s):  
E. Wielandt ◽  
L. Knopoff
Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. EN1-EN11 ◽  
Author(s):  
Tatsunori Ikeda ◽  
Toshifumi Matsuoka ◽  
Takeshi Tsuji ◽  
Toru Nakayama

In surface-wave analysis, S-wave velocity estimations can be improved by the use of higher modes of the surface waves. The vertical component of P-SV waves is commonly used to estimate multimode Rayleigh waves, although Rayleigh waves are also included in horizontal components of P-SV waves. To demonstrate the advantages of using the horizontal components of multimode Rayleigh waves, we investigated the characteristics of the horizontal and vertical components of Rayleigh waves. We conducted numerical modeling and field data analyses rather than a theoretical study for both components of Rayleigh waves. As a result of a simulation study, we found that the estimated higher modes have larger relative amplitudes in the vertical and horizontal components as the source depth increases. In particular, higher-order modes were observed in the horizontal component data for an explosive source located at a greater depth. Similar phenomena were observed in the field data acquired by using a dynamite source at 15-m depth. Sensitivity analyses of dispersion curves to S-wave velocity changes revealed that dispersion curves additionally estimated from the horizontal components can potentially improve S-wave velocity estimations. These results revealed that when the explosive source was buried at a greater depth, the horizontal components can complement Rayleigh waves estimated from the vertical components. Therefore, the combined use of the horizontal component data with the vertical component data would contribute to improving S-wave velocity estimations, especially in the case of buried explosive source signal.


2009 ◽  
Vol 61 (4) ◽  
pp. 191-205
Author(s):  
Hiroaki SATO ◽  
Hiroaki YAMANAKA ◽  
Sadanori HIGASHI ◽  
Kiyotaka SATO ◽  
Yoshiaki SHIBA ◽  
...  

Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. R109-R117 ◽  
Author(s):  
Lisa Groos ◽  
Martin Schäfer ◽  
Thomas Forbriger ◽  
Thomas Bohlen

The S-wave velocity of the shallow subsurface can be inferred from shallow-seismic Rayleigh waves. Traditionally, the dispersion curves of the Rayleigh waves are inverted to obtain the (local) S-wave velocity as a function of depth. Two-dimensional elastic full-waveform inversion (FWI) has the potential to also infer lateral variations. We have developed a novel workflow for the application of 2D elastic FWI to recorded surface waves. During the preprocessing, we apply a line-source simulation (spreading correction) and perform an a priori estimation of the attenuation of waves. The iterative multiscale 2D elastic FWI workflow consists of the preconditioning of the gradients in the vicinity of the sources and a source-wavelet correction. The misfit is defined by the least-squares norm of normalized wavefields. We apply our workflow to a field data set that has been acquired on a predominantly depth-dependent velocity structure, and we compare the reconstructed S-wave velocity model with the result obtained by a 1D inversion based on wavefield spectra (Fourier-Bessel expansion coefficients). The 2D S-wave velocity model obtained by FWI shows an overall depth dependency that agrees well with the 1D inversion result. Both models can explain the main characteristics of the recorded seismograms. The small lateral variations in S-wave velocity introduced by FWI additionally explain the lateral changes of the recorded Rayleigh waves. The comparison thus verifies the applicability of our 2D FWI workflow and confirms the potential of FWI to reconstruct shallow small-scale lateral changes of S-wave velocity.


1970 ◽  
Vol 10 (1-3) ◽  
pp. 321-334 ◽  
Author(s):  
L. Knopoff ◽  
J.W. Schlue ◽  
F.A. Schwab

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R693-R705 ◽  
Author(s):  
Jing Li ◽  
Sherif Hanafy ◽  
Zhaolun Liu ◽  
Gerard T. Schuster

We present a theory for wave-equation inversion of Love-wave dispersion curves, in which the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to inversion of Rayleigh-wave dispersion curves, the complicated Love-wave arrivals in traces are skeletonized as simpler data, namely, the picked dispersion curves in the [Formula: see text] domain. Numerical solutions to the SH-wave equation and an iterative optimization method are then used to invert these dispersion curves for the S-wave velocity model. This procedure, denoted as wave-equation dispersion inversion of Love waves (LWD), does not require the assumption of a layered model or smooth velocity variations, and it is less prone to the cycle-skipping problems of full-waveform inversion. We demonstrate with synthetic and field data examples that LWD can accurately reconstruct the S-wave velocity distribution in a laterally heterogeneous medium. Compared with Rayleigh waves, inversion of the Love-wave dispersion curves empirically exhibits better convergence properties because they are completely insensitive to the P-velocity variations. In addition, Love-wave dispersion curves for our examples are simpler than those for Rayleigh waves, and they are easier to pick in our field data with a low signal-to-noise ratio.


Sign in / Sign up

Export Citation Format

Share Document