scholarly journals A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica)

1982 ◽  
Vol 87 (C6) ◽  
pp. 4301 ◽  
Author(s):  
J. R. Petit ◽  
J. Jouzel ◽  
M. Pourchet ◽  
L. Merlivat
1988 ◽  
Vol 11 ◽  
pp. 208
Author(s):  
J. R. Petit ◽  
J. Jouzel ◽  
J. C. White ◽  
Qian Qiu-yu ◽  
M. Legrand ◽  
...  

The stable-isotope content of precipitation (δD and δ18O) is governed by the successive fractionation processes which occur during the atmospheric water cycle. As a result there is, in polar areas, a well-obeyed and theoretically well-understood linear relationship between the mean istopic content of snow and its mean temperature of formation. This relationship is well documented on a spatial scale but poorly known for a given site on a temporal basis, the main reason being that relatively long-term and sufficiently detailed meteorological data are only available for a few polar sites. The South Pole appears to be a suitable place for such a study because: (i) snow accumulation is high enough (∼20 cm of snow per year), thus reducing the possibility that annual layers will be lost as a result of wind; (ii) seasonal variation in isotope content is still preserved in snow up to 50 years old; (iii) meteorological data are available from the time the station was opened in 1957. Our previous studies of surface and recently deposited snow at the South Pole were very encouraging in this respect; they have been extended with a two-fold purpose: (i) to test the geographical representativity of the isotope record by comparing results from various cores taken within a 10 km radius of the station. The cores are dated by various techniques, such as stratigraphy, seasonal variation in isotopic content, beta-radioactivity fall-out layers, and detection by solid conductivity measurements of the high “spike” which is thought to correspond to the 1815 Tambora eruption; (ii) to discuss the South Pole isotope record over the last 1000 years as recovered from a 127 m deep ice core.


2013 ◽  
Vol 17 (4) ◽  
pp. 1661-1679 ◽  
Author(s):  
M. H. Mueller ◽  
R. Weingartner ◽  
C. Alewell

Abstract. The mean transit time (MTT) of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley) were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks) and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.


1998 ◽  
Vol 44 (146) ◽  
pp. 21-30 ◽  
Author(s):  
C. A. Shuman ◽  
R. B. Alley ◽  
M. A. Fahnestock ◽  
R. A. Bindschadler ◽  
J. W. C. White ◽  
...  

AbstractPrevious research has documented a close association between high-resolution snow-pit profiles of hydrogen and oxygen stable-isotope ratios and multi-year Special Sensor Microwave/lmager (SSM/I) 37 GHz brightness temperature data in central Greenland. Comparison of the SSM/I data to profiles obtained during the 1989-91 field seasons indicated thatδD andδ18O data from the near-surface snow at the Greenland summit are a reliable, high-resolution temperature proxy. To test this new technique further, additional stable-isotope data were obtained from a 2 m snow pit constructed during late-June 1995 near the GISP2 site.This new profile, supported by pit stratigraphy and chemistry data, confirms the utility of comparing stable-isotope records with SSM/I brightness temperatures. The sub-annual variation of theδDrecord at the GISP2 site was determined using 15 match points, from approximately December 1991 through June 1995 and was guided in part by time-constrained hoar layers. The close association of these temperature proxies supports the assertion that snow accumulation occurs frequently through the year and that the isotope record initially contains temperature information from many times of the year. This is also independently confirmed by analysis of H2O2data. The slope of the multi-yearTvsδcorrelation was evaluated along with the sub-annual variation in the amount, rate and timing of accumulation. These new results are consistent with those from the previous study and they also demonstrate that the snow in this area initially contains temperature and chemical records with sub-annual resolution. This encourages confident interpretation of the paleoclimatic signal variations in the GISP2 and GRIP deep cores.


2016 ◽  
Vol 10 (3) ◽  
pp. 1217-1227 ◽  
Author(s):  
Alexey Ekaykin ◽  
Lutz Eberlein ◽  
Vladimir Lipenkov ◽  
Sergey Popov ◽  
Mirko Scheinert ◽  
...  

Abstract. We present the results of glaciological investigations in the megadune area located 30 km to the east of Vostok Station (central East Antarctica) implemented during the 58th, 59th and 60th Russian Antarctic Expedition (January 2013–2015). Snow accumulation rate and isotope content (δD, δ18O and δ17O) were measured along the 2 km profile across the megadune ridge accompanied by precise GPS altitude measurements and ground penetrating radar (GPR) survey. It is shown that the spatial variability of snow accumulation and isotope content covaries with the surface slope. The accumulation rate regularly changes by 1 order of magnitude within the distance < 1 km, with the reduced accumulation at the leeward slope of the dune and increased accumulation in the hollow between the dunes. At the same time, the accumulation rate averaged over the length of a dune wave (22 mm w.e.) corresponds well with the value obtained at Vostok Station, which suggests no additional wind-driven snow sublimation in the megadunes compared to the surrounding plateau. The snow isotopic composition is in negative correlation with the snow accumulation. Analysing dxs ∕ δD and 17O-excess ∕ δD slopes (where dxs  =  δD − 8 ⋅ δ18O and 17O-excess  =  ln(δ17O  ∕  1000 +  1) −0.528 ⋅ ln (δ18O ∕ 1000 + 1)), we conclude that the spatial variability of the snow isotopic composition in the megadune area could be explained by post-depositional snow modifications. Using the GPR data, we estimated the apparent dune drift velocity (4.6 ± 1.1 m yr−1). The full cycle of the dune drift is thus about 410 years. Since the spatial anomalies of snow accumulation and isotopic composition are supposed to drift with the dune, a core drilled in the megadune area would exhibit the non-climatic 410-year cycle of these two parameters. We simulated a vertical profile of snow isotopic composition with such a non-climatic variability, using the data on the dune size and velocity. This artificial profile is then compared with the real vertical profile of snow isotopic composition obtained from a core drilled in the megadune area. We note that the two profiles are very similar. The obtained results are discussed in terms of interpretation of data obtained from ice cores drilled beyond the megadune areas.


1988 ◽  
Vol 11 ◽  
pp. 208-208
Author(s):  
J. R. Petit ◽  
J. Jouzel ◽  
J. C. White ◽  
Qian Qiu-yu ◽  
M. Legrand ◽  
...  

The stable-isotope content of precipitation (δD and δ18O) is governed by the successive fractionation processes which occur during the atmospheric water cycle. As a result there is, in polar areas, a well-obeyed and theoretically well-understood linear relationship between the mean istopic content of snow and its mean temperature of formation. This relationship is well documented on a spatial scale but poorly known for a given site on a temporal basis, the main reason being that relatively long-term and sufficiently detailed meteorological data are only available for a few polar sites. The South Pole appears to be a suitable place for such a study because: (i) snow accumulation is high enough (∼20 cm of snow per year), thus reducing the possibility that annual layers will be lost as a result of wind; (ii) seasonal variation in isotope content is still preserved in snow up to 50 years old; (iii) meteorological data are available from the time the station was opened in 1957.Our previous studies of surface and recently deposited snow at the South Pole were very encouraging in this respect; they have been extended with a two-fold purpose: (i) to test the geographical representativity of the isotope record by comparing results from various cores taken within a 10 km radius of the station. The cores are dated by various techniques, such as stratigraphy, seasonal variation in isotopic content, beta-radioactivity fall-out layers, and detection by solid conductivity measurements of the high “spike” which is thought to correspond to the 1815 Tambora eruption; (ii) to discuss the South Pole isotope record over the last 1000 years as recovered from a 127 m deep ice core.


Sign in / Sign up

Export Citation Format

Share Document