Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-β peptide in rat brain: a comparative, in vivo study versus vitamin C and E

2003 ◽  
Vol 35 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Sergio Rosales-Corral ◽  
Dun-Xian Tan ◽  
Russel J. Reiter ◽  
Miguel Valdivia-Velázquez ◽  
Gabriela Martínez-Barboza ◽  
...  
2010 ◽  
Vol 48 (1) ◽  
pp. 136-144 ◽  
Author(s):  
D. Allan Butterfield ◽  
Veronica Galvan ◽  
Miranda Bader Lange ◽  
Huidong Tang ◽  
Renã A. Sowell ◽  
...  

Neuroscience ◽  
2006 ◽  
Vol 138 (4) ◽  
pp. 1161-1170 ◽  
Author(s):  
M. Perluigi ◽  
G. Joshi ◽  
R. Sultana ◽  
V. Calabrese ◽  
C. De Marco ◽  
...  

2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Author(s):  
Shreya Mandal ◽  
Arpita Patra ◽  
Shrabani Pradhan ◽  
Suchismita Roy ◽  
Animesh Samanta ◽  
...  

Objective: The aim of this study was to evaluate the antioxidant property of the isolated phytocompounds from TA (Terminalia arjuna) bark and in vivo study for nephro-protective and oxidative stress reducing activity in experimentally induced albino male rats.Methods: Fractions from methanol crude TA extract were collected by column chromatography and F27, F28, F29 fractions were selected on the basis of antioxidant property by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. The in vivo study performed by 30 albino male rats which were randomly divided into five groups: Group I (control)were taken normal food and water, Groups II (uremic) were injected acetaminophen intraperitoneally at the dose of 500 mg/kg/d for 10 d, Group III, IV and V(extract treatment) acetaminophen intraperitoneally at the dose of 500 mg/kg/d for 10 d with co-administered orally of methanol fraction F27, F28, F29 at the dose of 100 mg/kg/d for 15 d respectively.Results: After scarification of rats, the uremic marker plasma urea (80%), creatinine (85%) were elevated and antioxidant enzyme marker such as plasma SOD and catalase level were significantly increased (p<0.05)in Group IV compared to Group II. The total phenolic content of the F28 methanolic fraction was (815.48±8.11) mg gallic acid equivalent/g of extract. For isolation of available compound by 1H NMR study in F28 methanol fraction of TA bark was arjunoside IV which contained olefinic proton (a pair of carbon atom linked with double bond).Conclusion: Among the three methanolic fraction of TA bark, F28 was shown best antioxidative, nephron-protective and oxidative stress reducing property. 


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chu Hsien Lim ◽  
Prameet Kaur ◽  
Emelyne Teo ◽  
Vanessa Yuk Man Lam ◽  
Fangchen Zhu ◽  
...  

The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


Sign in / Sign up

Export Citation Format

Share Document