Effects of high temperatures on performance of a complex mental task.

Author(s):  
W. Dean Chiles
Author(s):  
Z. L. Wang ◽  
J. Bentley

Studying the behavior of surfaces at high temperatures is of great importance for understanding the properties of ceramics and associated surface-gas reactions. Atomic processes occurring on bulk crystal surfaces at high temperatures can be recorded by reflection electron microscopy (REM) in a conventional transmission electron microscope (TEM) with relatively high resolution, because REM is especially sensitive to atomic-height steps.Improved REM image resolution with a FEG: Cleaved surfaces of a-alumina (012) exhibit atomic flatness with steps of height about 5 Å, determined by reference to a screw (or near screw) dislocation with a presumed Burgers vector of b = (1/3)<012> (see Fig. 1). Steps of heights less than about 0.8 Å can be clearly resolved only with a field emission gun (FEG) (Fig. 2). The small steps are formed by the surface oscillating between the closely packed O and Al stacking layers. The bands of dark contrast (Fig. 2b) are the result of beam radiation damage to surface areas initially terminated with O ions.


2003 ◽  
Vol 17 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Michal Kuniecki ◽  
Robert Barry ◽  
Jan Kaiser

Abstract The effect of stimulus valence was examined in the evoked cardiac response (ECR) elicited by the exposition of neutral and negative slides as well as by an innocuous auditory stimulus presented on the affective foregrounds generated by the slides. The exposition of the aversive slide produced prolonged cardiac deceleration in comparison with the neutral slide. Similar prolonged deceleration accompanied exposition of the neutral auditory stimulus on the negative visual foreground in comparison with the neutral foreground. We interpret these results as an autonomic correlate of extended stimulus processing associated with the affective stimulus. The initial deceleration response, covering two or three slower heart beats, may be prolonged for several seconds before HR reaches the baseline level again. In such a case the evoked cardiac deceleration can be functionally divided into two parts: the reflexive bradycardia (ECR1) elicited by neutral stimuli and a late decelerative component (LDC). We can speculate that the latter is associated with an additional voluntary continuation of processing of the stimulus. This must involve some cognitive aspect different from the mental task performance which leads to the accelerative ECR2, and we suggest that processing of a stimulus with negative valence is involved in generating the LDC.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Sign in / Sign up

Export Citation Format

Share Document