Variation in the TNF-α promoter region associated with susceptibility to cerebral malaria

Nature ◽  
1994 ◽  
Vol 371 (6497) ◽  
pp. 508-511 ◽  
Author(s):  
William McGuire ◽  
Adrian V. S. Hill ◽  
Catherine E. M. Allsopp ◽  
Brian M. Greenwood ◽  
Dominic Kwiatkowski
2003 ◽  
Vol 49 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Fabian Esamai ◽  
Jan Ernerudh ◽  
Helena Janols ◽  
Susanne Welin ◽  
Christina Ekerfelt ◽  
...  

2005 ◽  
Vol 33 (04) ◽  
pp. 547-557 ◽  
Author(s):  
Jae-Young Um ◽  
Jae-Heung Lee ◽  
Jong-Cheon Joo ◽  
Kyung-Yo Kim ◽  
Eun-Hee Lee ◽  
...  

During the last decade, a growing corpus of evidence has indicated an important role of cytokines in the development of brain damage following cerebral ischemia. Tumor necrosis factor-α (TNF-α), a potent immunomodulator and pro-inflammatory cytokine, has been implicated in many pathological processes. In this study, we examined whether promoter region polymorphism in the TNF-α gene at position –308 affects the odds of cerebral infarction (CI) and whether genetic risk is enhanced by Sasang constitutional classification. Two hundred and twelve CI patients and 610 healthy controls were genotyped and determined according to Sasang constitutional classification. A significant decrease was found for the TNF-α A allele in CI patients compared with controls ( p = 0.033, odds ratio, OR: 0.622). However, there was no significant association between TNF-α polymorphism and Sasang constitution in CI patients. Our finding suggests that TNF-α promoter region polymorphism is responsible for susceptibility to CI in Koreans.


Endocrinology ◽  
2015 ◽  
Vol 156 (9) ◽  
pp. 3192-3202 ◽  
Author(s):  
Kohshiro Nakao ◽  
Hiroshi Kishi ◽  
Fumiharu Imai ◽  
Hiroto Suwa ◽  
Takashi Hirakawa ◽  
...  

Several inflammatory cytokines regulate ovarian function. TNF-α is produced in granulosa cells under physiological conditions and has a reciprocal action on follicle development. In contrast, in pelvic inflammatory diseases, TNF-α is excessively produced in the pelvic cavity and has an adverse effect on reproductive functions. The objective of this study was to elucidate the mechanism of action of TNF-α on the expression of LH receptor (LHR) in immature rat granulosa cells. TNF-α suppressed FSH-induced LHR mRNA and protein expression and was not associated with cAMP accumulation. By using a luciferase assay, the construct containing base pairs −1389 to −1 of the rat Lhcgr promoter revealed that TNF-α decreased FSH-induced promoter activity. In response to TNF-α, nuclear factor (NF)-κB p65 was translocated to the nucleus, and the suppressive effect of TNF-α on LHR mRNA expression was abrogated by an NF-κB inhibitor. In a chromatin immunoprecipitation assay, TNF-α induced the association of NF-κB p65 with the rat Lhcgr transcriptional promoter region. NF-κB p65 and histone deacetylase (HDAC) interact to mediate expression of several genes at a transcriptional level. HDAC activity is thought to induce tight connections within local chromatin structures and repress gene transcription. Furthermore, the TNF-α–induced suppression of LHR mRNA expression was blocked by an HDAC inhibitor. Taken together, these results suggest that the interaction of NF-κB p65 with HDAC in the promoter region of rat Lhcgr might be responsible for TNF-α action on the regulation of LHR.


2004 ◽  
Vol 50 (11) ◽  
pp. 2136-2140 ◽  
Author(s):  
Marie Bennermo ◽  
Claes Held ◽  
Sten Stemme ◽  
Carl-Göran Ericsson ◽  
Angela Silveira ◽  
...  

Abstract Background: A single-nucleotide polymorphism (SNP) in the promoter region of the interleukin-6 (IL-6) gene at position −174 (G>C) has been reported to be associated with a variety of major diseases, such as Alzheimer disease, atherosclerosis, and cardiovascular disease, cancer, non-insulin-dependent diabetes mellitus, osteoporosis, sepsis, and systemic-onset juvenile chronic arthritis. However, authors of previous in vitro and in vivo studies have reported conflicting results regarding the functionality of this polymorphism. We therefore aimed to clarify the role of the −174 SNP for the induction of IL-6 in vivo. Methods: We vaccinated 20 and 18 healthy individuals homozygous for the −174 C and G alleles, respectively, with 1 mL of Salmonella typhii vaccine. IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were measured in the blood at baseline and up to 24 h after vaccination. Results: Individuals with the G genotype had significantly higher plasma IL-6 values at 6, 8, and 10 h after vaccination than did individuals with the C genotype (P <0.005). There were no differences between the two genotypes regarding serum concentrations of IL-1β and TNF-α before or after vaccination. Conclusions: The −174 G>C SNP in the promoter region of the IL-6 gene is functional in vivo with an increased inflammatory response associated with the G allele. Considering the central role of IL-6 in a variety of major diseases, the present finding might be of major relevance.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Luana Leão ◽  
Bruna Puty ◽  
Maria Fâni Dolabela ◽  
Marinete Marins Povoa ◽  
Yago Gecy De Sousa Né ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Marion Avril ◽  
Maria Bernabeu ◽  
Maxwell Benjamin ◽  
Andrew Jay Brazier ◽  
Joseph D. Smith

ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum -infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. IMPORTANCE Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines expressing group A DC13-containing PfEMP1 variants, a subset that has previously been shown to have high brain cell- and other endothelial cell-binding activities. We show that DC13-containing PfEMP1 variants have dual EPCR- and ICAM-1-binding activities and that both receptors are involved in parasite adherence to lung and brain endothelial cells. As both EPCR and ICAM-1 are implicated in cerebral malaria, these findings suggest the possibility that parasites with dual binding activities are involved in parasite sequestration to microvascular beds with low CD36 expression, such as the brain, and we urge more research into the multiadhesive properties of PfEMP1 variants.


2002 ◽  
Vol 195 (10) ◽  
pp. 1371-1377 ◽  
Author(s):  
Christian R. Engwerda ◽  
Tracey L. Mynott ◽  
Sanjeet Sawhney ◽  
J. Brian De Souza ◽  
Quentin D. Bickle ◽  
...  

Cerebral malaria (CM) causes death in children and nonimmune adults. TNF-α has been thought to play a key role in the development of CM. In contrast, the role of the related cyto-kine lymphotoxin α (LTα) in CM has been overlooked. Here we show that LTα, not TNFα, is the principal mediator of murine CM. Mice deficient in TNFα (B6.TNFα−/−) were as susceptible to CM caused by Plasmodium berghei (ANKA) as C57BL/6 mice, and died 6 to 8 d after infection after developing neurological signs of CM, associated with perivascular brain hemorrhage. Significantly, the development of CM in B6.TNFα−/− mice was not associated with increased intracellular adhesion molecule (ICAM)-1 expression on cerebral vasculature and the intraluminal accumulation of complement receptor 3 (CR3)-positive leukocytes was moderate. In contrast, mice deficient in LTα (B6.LTα−/−) were completely resistant to CM and died 11 to 14 d after infection with severe anemia and hyperparasitemia. No difference in blood parasite burden was found between C57BL/6, B6.TNFα−/−, and B6.LTα−/− mice at the onset of CM symptoms in the two susceptible strains. In addition, studies in bone marrow (BM) chimeric mice showed the persistence of cerebral LTα mRNA after irradiation and engraftment of LTα-deficient BM, indicating that LTα originated from a radiation-resistant cell population.


2017 ◽  
Vol 5 (12) ◽  
pp. 1099-1105
Author(s):  
SandhyaLal MD ◽  
◽  
RajniDawar MD ◽  
MKBhatnagar MD ◽  
JayashreeBhattacharjee MD ◽  
...  

2021 ◽  
Vol 118 (11) ◽  
pp. e1907653118
Author(s):  
Laughing Bear Torrez Dulgeroff ◽  
Miranda S. Oakley ◽  
Michal C. Tal ◽  
Ying Ying Yiu ◽  
Joy Q. He ◽  
...  

CD47 is an antiphagocytic “don’t eat me” signal that inhibits programmed cell removal of self. As red blood cells (RBCs) age they lose CD47 expression and become susceptible to programmed cell removal by macrophages. CD47−/− mice infected with Plasmodium yoelii, which exhibits an age-based preference for young RBCs, were previously demonstrated to be highly resistant to malaria infection. Our study sought to test the therapeutic benefit of CD47 blockade on ameliorating the clinical syndromes of experimental cerebral malaria (ECM), using the Plasmodium berghei ANKA (Pb-A) murine model. In vitro we tested the effect of anti-CD47 mAb on Plasmodium-infected RBC phagocytosis and found that anti-CD47 treatment significantly increased clearance of Plasmodium-infected RBCs. Infection of C57BL/6 mice with Pb-A is lethal and mice succumb to the clinical syndromes of CM between days 6 and 10 postinfection. Strikingly, treatment with anti-CD47 resulted in increased survival during the cerebral phase of Pb-A infection. Anti-CD47–treated mice had increased lymphocyte counts in the peripheral blood and increased circulating levels of IFN-γ, TNF-α, and IL-22. Despite increased circulating levels of inflammatory cytokines, anti-CD47–treated mice had reduced pathological features in the brain. Survival of ECM in anti-CD47–treated mice was correlated with reduced cellular accumulation in the cerebral vasculature, improved blood–brain barrier integrity, and reduced cytotoxic activity of infiltrating CD8+ T cells. These results demonstrate the therapeutic benefit of anti-CD47 to reduce morbidity in a lethal model of ECM, which may have implications for preventing mortality in young African children who are the highest casualties of CM.


Sign in / Sign up

Export Citation Format

Share Document