scholarly journals SLC22A2 gene 808 G/T variant is related to plasma lactate concentration in Chinese type 2 diabetics treated with metformin

2010 ◽  
Vol 31 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Qing Li ◽  
Fang Liu ◽  
Tai-shan Zheng ◽  
Jun-ling Tang ◽  
Hui-juan Lu ◽  
...  
2010 ◽  
Vol 35 (9) ◽  
pp. 1287-1293 ◽  
Author(s):  
Regina van Dyken ◽  
Christian Hubold ◽  
Sonja Meier ◽  
Britta Hitze ◽  
Aja Marxsen ◽  
...  

1977 ◽  
Vol 232 (2) ◽  
pp. E180 ◽  
Author(s):  
R R Wolfe ◽  
D Elahi ◽  
J J Spitzer

We studied the effects of E. coli endotoxin on the glucose and lactate kinetics in dogs by means of the primed constant infusion of [6(-3)H] glucose and Na-L-(+)-[U-14C] lactate. The infusion of endotoxin induced a transient hyperglycemic level, followed by a steady fall in plasma glucose to hypoglycemic levels. The rate of appearance (Ra) and the rate of disappearance (Rd) of glucose were both significantly elevated (P less than .05) for 150 min after endotoxin, after which neither differed from the preinfusion value. The metabolic clearance rate of glucose was significantly elevated at all times 30 min postendotoxin. By 30 min postendotoxin, Ra and Rd of lactate, plasma lactate concentration, and the percent of glucose turnover originating from lactate were significantly elevated and remained so for the duration of the experiment. We concluded that after endotoxin hypoglycemia developed because of an enhanced peripheral uptake of glucose and a failure of the liver to maintain an increased Ra of glucose. We also concluded that lactate became an important precursor for gluconeogenesis and an important metabolic substrate.


1988 ◽  
Vol 255 (5) ◽  
pp. E629-E635 ◽  
Author(s):  
D. M. Hargrove ◽  
G. J. Bagby ◽  
C. H. Lang ◽  
J. J. Spitzer

Combined alpha- and beta-adrenergic blockade was used to investigate the role of catecholamines in endotoxin-induced elevations in glucose kinetics. Glucose kinetics were measured before and for 4 h after the injection of endotoxin [100 micrograms/100 g body wt iv, 30% lethal dose (LD30) at 24 h]. Adrenergic blockade was achieved by the bolus injection of phentolamine and propranolol followed by their continuous infusion. Endotoxin-treated rats exhibited a transient hyperglycemia and sustained (greater than 4 h) increase in plasma lactate concentration, as well as elevated rates of glucose appearance (Ra, 83%), disappearance (Rd, 58%), recycling (160%), and metabolic clearance (23%). Adrenergic blockade prevented endotoxin-induced increases in plasma glucose concentration, Ra, Rd, and recycling but not glucose clearance. The increase in plasma lactate concentration was blunted by 35%. After 2 h, endotoxic animals infused with adrenergic antagonists developed hypoglycemia, which may have resulted from an increased plasma insulin concentration. The attenuation of elevated glucose turnover by adrenergic blockade in the endotoxin-treated animals was not due to a reduction in plasma glucagon level or differences in plasma insulin concentration. Administration of the alpha- or beta-adrenergic antagonists separately blunted but did not prevent endotoxin-induced changes in glucose kinetics, and therefore the efficacy of the adrenergic blockade could not be assigned to a single receptor class. These results indicate that catecholamines are important contributory factors to many of the early alterations in carbohydrate metabolism observed during endotoxemia.


2014 ◽  
Vol 27 (2) ◽  
pp. 196 ◽  
Author(s):  
Daniela Guelho ◽  
Isabel Paiva ◽  
Francisco Carrilho

<strong>Introduction:</strong> In type 2 diabetic patients treated with metformin the development of hyperlactacidemia or even lactic acidosis seems to result from an acute precipitating event. This study aims to assess the prevalence and relative risk of hyperlactacidemia in diabetic patients admitted in the Emergency Room, the predictive factors for high lactate concentration and the influence of hyperlactacidemia in patients’ prognosis.<br /><strong>Material and Methods:</strong> Transversal observational study including patients observed between June and October 2012: 138 type 2 diabetics, 66 treated with metformin, and 83 non-diabetic patients. Studies’ variables: age, sex, cause of admition, blood pressure, drugs, personal history, analytical study (biochemistry and arterial blood gas analyses with lactate) and destination. Statistical analysis was performed using SPSS 21.0®.<br /><strong>Results:</strong> Mean lactate concentration and hyperlactacidemia prevalence were significantly higher in diabetic patients (2.1 ± 0.1mmol/L vs 1.1 ± 0.1mmol/L, p &lt; 0.001 and 39.1% vs 3.6%, p &lt; 0.001, respectively) and in those under metformin compared to other diabetics (2.7 ± 0.2 mmol/L vs 1.6 ± 0.1 mmol/L, p &lt; 0.001 and 56.9% vs 23.3%, p &lt; 0.001, respectively). Diabetics on metformin presented a 25-fold increased risk of hyperlactacidemia (OR = 25.10, p &lt; 0.05). Creatinine was the only independent predictive factor for lactate<br />concentrations (B = 1.33, p &lt; 0.05). Patients with hyperlactacidemia had 4.4 times higher odds of being hospitalized or dying (OR = 4.37, p &lt; 0.05). When hospitalized, they had longer hospitalization periods (21.66 ± 5.86 days vs 13.68 ± 5.33 days, p &lt; 0.001) and higher rate of deaths (12.5% (n = 4) vs 4.3% (n = 2), p &lt; 0.05).<br /><strong>Conclusion:</strong> There was an increased risk of hyperlactacidemia in patients with type 2 diabetes, particularly for those under metformin. Serum creatinine represented the only independent associated factor of lactate concentration. The presence of hyperlactacidemia was associated with worse prognosis.


1986 ◽  
Vol 60 (3) ◽  
pp. 777-781 ◽  
Author(s):  
J. Simon ◽  
J. L. Young ◽  
D. K. Blood ◽  
K. R. Segal ◽  
R. B. Case ◽  
...  

Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.


1997 ◽  
Vol 200 (24) ◽  
pp. 3091-3099 ◽  
Author(s):  
S A Shaffer ◽  
D P Costa ◽  
T M Williams ◽  
S H Ridgway

The white whale Delphinapterus leucas is an exceptional diver, yet we know little about the physiology that enables this species to make prolonged dives. We studied trained white whales with the specific goal of assessing their diving and swimming performance. Two adult whales performed dives to a test platform suspended at depths of 5-300 m. Behavior was monitored for 457 dives with durations of 2.2-13.3 min. Descent rates were generally less than 2 m s-1 and ascent rates averaged 2.2-3 m s-1. Post-dive plasma lactate concentration increased to as much as 3.4 mmol l-1 (4-5 times the resting level) after dives of 11 min. Mixed venous PO2 measured during voluntary breath-holds decreased from 79 to 20 mmHg within 10 min; however, maximum breath-hold duration was 17 min. Swimming performance was examined by training the whales to follow a boat at speeds of 1.4-4.2 m s-1. Respiratory rates ranged from 1.6 breaths min-1 at rest to 5.5 breaths min-1 during exercise and decreased with increasing swim speed. Post-exercise plasma lactate level increased to 1.8 mmol l-1 (2-3 times the resting level) following 10 min exercise sessions at swimming speeds of 2.5-2.8 m s-1. The results of this study are consistent with the calculated aerobic dive limit (O2 store/metabolic rate) of 9-10 min. In addition, white whales are not well adapted for high-speed swimming compared with other small cetaceans.


Author(s):  
Stephen R. Stannard ◽  
Martin W. Thompson ◽  
Janette C. Brand Miller

Consumption of low glycemic index (GI) foods before submaximal endurance exercise may be beneficial to performance. To test whether this may also be true for high intensity exercise. 10 trained cyclists began an incremental exercise test to exhaustion 65 min after consuming equal carbohydrate portions of glucose (HGI), pasta (LGI), and a noncarbohydrate control (PL). Time to fatigue did not differ significantly (p = 0.05) between treatments. Plasma glucose concentration was significantly lower after LGI vs. HGI from 15 to 45 min of rest postprandial. During exercise, plasma glucose concentration was significantly lower after HGI vs. LGI from 200 W until exhaustion. Plasma lactate concentration following HGI was significantly higher than PL from 30 min of rest postprandial through to the end of the 200-W workload. Plasma lactate concentration following LGI was significantly lower than after HGI from 45 min of rest postprandial through to the end of the 100-W workload. At higher exercise intensities, there was no significant difference in plasma lactate levels between treatments. These findings suggest that a high GI carbohydrate meal (1 g/kg body wt) 65 min prior to exercise decreases plasma glucose and increases plasma lactate levels compared to a low GI meal, but not enough to be detrimental to incremental exercise performance.


2015 ◽  
Vol 40 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Victor Amorim Andrade-Souza ◽  
Romulo Bertuzzi ◽  
Gustavo Gomes de Araujo ◽  
David Bishop ◽  
Adriano Eduardo Lima-Silva

This study aimed to investigate whether isolated or combined carbohydrate (CHO) and caffeine (CAF) supplementation have beneficial effects on performance during soccer-related tests performed after a previous training session. Eleven male, amateur soccer players completed 4 trials in a randomized, double-blind, and crossover design. In the morning, participants performed the Loughborough Intermittent Shuttle Test (LIST). Then, participants ingested (i) 1.2 g·kg−1 body mass·h−1 CHO in a 20% CHO solution immediately after and 1, 2, and 3 h after the LIST; (ii) CAF (6 mg·kg−1 body mass) 3 h after the LIST; (iii) CHO combined with CAF (CHO+CAF); and (iv) placebo. All drinks were taste-matched and flavourless. After this 4-h recovery, participants performed a countermovement jump (CMJ) test, a Loughborough Soccer Passing Test (LSPT), and a repeated-sprint test. There were no main effects of supplementation for CMJ, LSPT total time, or best sprint and total sprint time from the repeated-sprint test (p > 0.05). There were also no main effects of supplementation for heart rate, plasma lactate concentration, rating of perceived exertion (RPE), pleasure–displeasure, and perceived activation (p > 0.05). However, there were significant time effects (p < 0.05), with heart rate, plasma lactate concentration, RPE, and perceived activation increasing with time, and pleasure–displeasure decreasing with time. In conclusion, isolated and/or combined CHO and CAF supplementation is not able to improve soccer-related performance tests when performed after a previous training session.


Sign in / Sign up

Export Citation Format

Share Document