HDACi: molecular mechanisms and therapeutic implications in the innate immune system

2011 ◽  
Vol 90 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Bandar Ali Suliman ◽  
Dakang Xu ◽  
Bryan RG Williams
2021 ◽  
Vol 22 (17) ◽  
pp. 9535
Author(s):  
Yuhuai Xie ◽  
Yuanyuan Wei

Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Betty Diamond ◽  
Bruce T. Volpe ◽  
Sonya VanPatten ◽  
Yousef Al Abed

Abstract The response to viral infection generally includes an activation of the adaptive immune response to produce cytotoxic T cells and neutralizing antibodies. We propose that SARS-CoV-2 activates the innate immune system through the renin-angiotensin and kallikrein-bradykinin pathways, blocks interferon production and reduces an effective adaptive immune response. This model has therapeutic implications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
G. Prashanth ◽  
Basavaraj Vastrad ◽  
Anandkumar Tengli ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

Abstract Background Type 1 diabetes (T1D) is a serious threat to childhood life and has fairly complicated pathogenesis. Profound attempts have been made to enlighten the pathogenesis, but the molecular mechanisms of T1D are still not well known. Methods To identify the candidate genes in the progression of T1D, expression profiling by high throughput sequencing dataset GSE123658 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and gene ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI), modules, target gene - miRNA regulatory network and target gene - TF regulatory network analysis were constructed and analyzed using HIPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, validation of hub genes was conducted by using ROC (Receiver operating characteristic) curve and RT-PCR analysis. A molecular docking study was performed. Results A total of 284 DEGs were identified, consisting of 142 up regulated genes and 142 down regulated genes. The gene ontology (GO) and pathways of the DEGs include cell-cell signaling, vesicle fusion, plasma membrane, signaling receptor activity, lipid binding, signaling by GPCR and innate immune system. Four hub genes were identified and biological process analysis revealed that these genes were mainly enriched in cell-cell signaling, cytokine signaling in immune system, signaling by GPCR and innate immune system. ROC curve and RT-PCR analysis showed that EGFR, GRIN2B, GJA1, CAP2, MIF, POLR2A, PRKACA, GABARAP, TLN1 and PXN might be involved in the advancement of T1D. Molecular docking studies showed high docking score. Conclusions DEGs and hub genes identified in the present investigation help us understand the molecular mechanisms underlying the advancement of T1D, and provide candidate targets for diagnosis and treatment of T1D.


2015 ◽  
Vol 20 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Muhammad Shamoon ◽  
Yuanyuan Deng ◽  
Yong Q Chen ◽  
Madhav Bhatia ◽  
Jia Sun

2017 ◽  
Vol 114 (13) ◽  
pp. E2758-E2765 ◽  
Author(s):  
Alexey V. Kostarnoy ◽  
Petya G. Gancheva ◽  
Bernd Lepenies ◽  
Amir I. Tukhvatulin ◽  
Alina S. Dzharullaeva ◽  
...  

Sterile (noninfected) inflammation underlies the pathogenesis of many widespread diseases, such as allergies and autoimmune diseases. The evolutionarily conserved innate immune system is considered to play a key role in tissue injury recognition and the subsequent development of sterile inflammation; however, the underlying molecular mechanisms are not yet completely understood. Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage. Mincle activation by cholesterol sulfate causes the secretion of a range of proinflammatory mediators, and s.c. injection of cholesterol sulfate results in a Mincle-mediated induction of a severe local inflammatory response. In addition, our study reveals a role of Mincle as a driving component in the pathogenesis of allergic skin inflammation. In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion. Taken together, our results provide a deeper understanding of the fundamental mechanisms underlying sterile inflammation.


2015 ◽  
Vol 11 (8) ◽  
pp. 2021-2029 ◽  
Author(s):  
Nassim Matin ◽  
Omidreza Tabatabaie ◽  
Raffaele Falsaperla ◽  
Riccardo Lubrano ◽  
Piero Pavone ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1410
Author(s):  
Yuriy A. Knirel ◽  
Andrey P. Anisimov ◽  
Angelina A. Kislichkina ◽  
Anna N. Kondakova ◽  
Olga V. Bystrova ◽  
...  

Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host’s innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.


Sign in / Sign up

Export Citation Format

Share Document