scholarly journals A Novel Regulatory Player in the Innate Immune System: Long Non-Coding RNAs

2021 ◽  
Vol 22 (17) ◽  
pp. 9535
Author(s):  
Yuhuai Xie ◽  
Yuanyuan Wei

Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.

2018 ◽  
Author(s):  
Patricia E. Collins ◽  
Domenico Somma ◽  
David Kerrigan ◽  
Felicity Herrington ◽  
Karen R. Keeshan ◽  
...  

AbstractThe ability of the innate immune system to distinguish between low level microbial presence and invasive pathogens is fundamental for immune homeostasis and immunity. However, the molecular mechanisms underlying threat discrimination by innate immune cells are not clearly defined. Here we describe the integration of the NF-ĸB and MAPK pathways in the nucleus by the IĸB protein BCL-3 and the MAP3K TPL-2. Our data reveals that TPL-2 is a nucleocytoplasmic shuttling protein and demonstrates that the nucleus is the primary site for TPL-2 ubiquitination and proteasomal degradation. BCL-3 promotes TPL-2 degradation through interaction in the nucleus. As a consequence, Bcl3-/- macrophages have increased TPL-2 stability and MAPK activity following TLR stimulation. The enhanced stability of TPL-2 in Bcl3-/- macrophages lowers the MAPK activation threshold and the level of TLR ligand required to initiate an inflammatory response. This study establishes the nucleus as a key regulatory site for TLR-induced MAPK activity and identifies BCL-3 as a regulator of the cellular decision to initiate inflammation


2021 ◽  
Vol 218 (6) ◽  
Author(s):  
Valbona Mirakaj

Innate immune cells are crucial in the development and regulation of cardiovascular disease. In this issue, two groups, Davis et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201839) and Li et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210008) describe the impact of the innate immune system on the development of cardiovascular disease.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2226
Author(s):  
Israa Shihab ◽  
Bariaa A. Khalil ◽  
Noha Mousaad Elemam ◽  
Ibrahim Y. Hachim ◽  
Mahmood Yaseen Hachim ◽  
...  

The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fangming Xiu ◽  
Mile Stanojcic ◽  
Li Diao ◽  
Marc G. Jeschke

Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Grace R. Pidwill ◽  
Josie F. Gibson ◽  
Joby Cole ◽  
Stephen A. Renshaw ◽  
Simon J. Foster

Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.


2019 ◽  
Vol 7 (12) ◽  
pp. 625 ◽  
Author(s):  
Amanda Carroll-Portillo ◽  
Henry C. Lin

Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1512
Author(s):  
Adil Ijaz ◽  
Edwin J. A. Veldhuizen ◽  
Femke Broere ◽  
Victor P. M. G. Rutten ◽  
Christine A. Jansen

Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1883-1883
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Yiming Huang ◽  
Suzanne T Ildstad

Abstract Abstract 1883 The barrier for rejection of allogeneic bone marrow cells (BMC) has been attributed primarily to adaptive immunity, especially T cell immune responses. Significant progress has been made in developing immune-based nonmyeloablative conditioning strategies to achieve mixed chimerism in bone marrow transplantation (BMT) with targeting of T cells. The role of the innate immune system in BMC allorejection has not been adequately addressed. The fact that when T cells are targeted, alloengraftment requires additional conditioning from nonspecific reagents, such as irradiation and immunosuppressive drugs, suggesting the existence of another barrier. As humoral immunity is unlikely a barrier for BMC in unprimed naïve recipients, the innate immune system is most likely another barrier in BMT. The present study focused on a role for components of the innate immune response in allogeneic BMT. Using T cell-deficient (TCR-β/δ−/−) mice, we found that rejection of transplanted allogeneic BMC occurred very early, well before the time required for T cell activation and was T cell independent, suggesting an effector role for innate immune cells in BMC rejection. How the innate immune system recognizes or responds to allogeneic BMC remains unknown. Toll-like receptors (TLR) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors of MyD88 and/or TRIF. We have demonstrated that TRIF signaling is the innate immune signaling in BMC allorejection by showing superior engraftment in mice deficient in TRIF but not MyD88. To further determine the cell populations of innate immunity in allogeneic BMC rejection mediated through TRIF signaling, TRIF deficient (TRIFLps2/Lps2) mice were used as recipients for in vivo cytotoxicity assays after adoptive transfer of wildtype innate immune cells: macrophages or NK cells. Wildtype F4/80+ macrophages were sorted from B6 spleens and peritoneal cavities and NK1.1+ NK cells from B6 spleens. The doses of transferred NK1.1+ and F4/80+ cells were 370,000 and 140,000 per recipient, respectively. One day after transfer, 20 × 106 CFSE-labeled BALB/c target (high intensity) and internal control B6 (low intensity) BMC were injected. TRIFLps2/Lps2 mice that did not receive transferred cells and wildtype B6 mice treated with saline served as controls. As expected, donor cells were rapidly eliminated in control wildtype B6 mice and rejection was complete by day 3. The rejection of donor cells was significantly less in TRIFLps2/Lps2 mice without receiving adoptively transferred cells compared with wildtype B6 controls, from marginal significance (P = 0.04) at 3 hr to the highest significance (P = 0.0001) at day 3 after cell infusion. At day 3, the killing rates were 91.4 ± 1.4% in TRIFLps2/Lps2 mice without transferred cells and 97.6 ± 1.5% in wildtype B6 controls. The eliminating rates of donor cells were increased in TRIFLps2/Lps2 recipients that received either F4/80+ or NK1.1+ cells, and the kinetics of elimination of donor cells was shifted to resemble B6 controls with no significant difference between them at these 3 time points (P values: 0.11 to 0.87). The cytotoxicity of donor cells was significantly increased in TRIFLps2/Lps2 recipients adoptively transferred with F4/80+ or NK1.1+ cells when compared with TRIFLps2/Lps2 controls at all time points (P values: 0.038 to 0.002), except the one at 3hr when compared between TRIFLps2/Lps2 recipients received NK1.1+ cells and TRIFLps2/Lps2 controls (P = 0.058). At day 1, the killing percentages of CFSE labeled BALB/c cells were 71.0 ± 5.1%, 69.1 ± 3.9%, or 61.1 ± 5.8% in TRIFLps2/Lps2 recipients that received either F4/80+ cells, NK1.1+ cells, or none, respectively. Taken together, the restored cytotoxicity in TRIF-deficient recipients transferred with wildtype F4/80+ or NK1.1+ cells suggests that TRIF signaling is essential for macrophage- and NK cell-mediated early rejection of allogeneic BMC, and that both cell types function as non-redundant effector cells in BMC rejection. Disclosures: Ildstad: Regenerex, LLC, a biotech start-up company: Equity Ownership.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Evaggelia Liaskou ◽  
Daisy V. Wilson ◽  
Ye H. Oo

Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair.


Sign in / Sign up

Export Citation Format

Share Document