scholarly journals Nε-(Carboxymethyl)lysine Modification of Elastin Alters Its Biological Properties: Implications for the Accumulation of Abnormal Elastic Fibers in Actinic Elastosis

2012 ◽  
Vol 132 (2) ◽  
pp. 315-323 ◽  
Author(s):  
Eiji Yoshinaga ◽  
Akira Kawada ◽  
Koji Ono ◽  
Eita Fujimoto ◽  
Hiroshi Wachi ◽  
...  
QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Marium Romany Abdelsayed ◽  
Suzi Sobhy Atalla ◽  
Gehan Khalaf Megahed ◽  
Asmaa Abd El-Monem Abo Zeid

Abstract Introduction With the increase of end stage lung diseases and the great problems facing lung transplantation tissue engineering become a promising solution. The first step in lung engineering is to obtain a 3D Extracellular matrix lung scaffold via decellularization. Decellularization aims to remove cells from tissue ultrastructure while preserving the mechanical and biological properties of the tissue. Intact ECM provides critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. Objectives This study aimed to obtain an intact and well-preserved ECM lung scaffold by decellularization of rat lungs. Methods Decellularization of lungs of ten Wistar rats was achieved by perfusing detergents through the pulmonary artery. The resultant scaffolds were fixed and analyzed histologically. Results It was found that the decellularization process effectively removed the cellular and nuclear material while retaining native the 3D ECM of lung tissue. The architecture of the collagen and elastic fibers networks were preserved as comparable to the native lungs. Furthermore, the basement membranes of the bronchiolar and interalveolar septa were intact. Conclusions This methodology is expected to allow decellularization of human lung tissues and permits future scientific exploration in tissue engineering.


2018 ◽  
Vol 20 (2) ◽  
pp. 51-60
Author(s):  
Yadira V. Boza Oreamuno DDS, MSc ◽  
Isolde G. Rojas DDS, PhD

The extracellular matrix (ECM) plays an important role in the regulation of biological events, such as cell migration, proliferation and differentiation. Chronic exposure to ultraviolet (UV) light causes elastosis (to varying degrees), which corresponds to a basophilic degeneration of the ECM. Actinic cheilitis (AC) is a potentially malignant lip lesion induced by regular and prolonged exposure to UV light, which mainly affects the vermilion. AC lesions have a complex stroma characterized by the presence of elastosis, chronic inflammatory infiltrate of different intensity and the appearance of telangiectatic blood vessels. Within this inflammatory infiltrate a significant increase of mast cells (MCs) has been described, located especially around areas of elastosis and at the subepithelial zone. It has been proposed that actinic elastosis is produced both, by degenerative processes and by abnormal synthesis of elastic fibers by photodamaged fibroblasts, which is accompanied by morphological changes in collagen. Although the fibroblast would play a major role in actinic elastosis formation, several studies suggest that other cell types such as MCs also contribute significantly to actinic ECM damage. The purpose of this review is to discuss the characteristics of elastosis in AC.


1994 ◽  
Vol 7 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Shuhei Imayama ◽  
Kyoko Nakamura ◽  
Minoru Takeuchi ◽  
Yoshiaki Hori ◽  
Yoshinori Takema ◽  
...  

Author(s):  
E. N. Albert

Silver tetraphenylporphine sulfonate (Ag-TPPS) was synthesized in this laboratory and used as an electron dense stain for elastic tissue (Fig 1). The procedures for the synthesis of tetraphenylporphine sulfonate and the staining method for mature elastic tissue have been described previously.The fine structure of developing elastic tissue was observed in fetal and new born rat aorta using tetraphenylporphine sulfonate, phosphotungstic acid, uranyl acetate and lead citrate. The newly forming elastica consisted of two morphologically distinct components. These were a central amorphous and a peripheral fibrous. The ratio of the central amorphous and the peripheral fibrillar portion changed in favor of the former with increasing age.It was also observed that the staining properties of the two components were entirely different. The peripheral fibrous component stained with uranyl acetate and/or lead citrate while the central amorphous portion demonstrated no affinity for these stains. On the other hand, the central amorphous portion of developing elastic fibers stained vigorously with silver tetraphenylporphine sulfonate, while the fibrillar part did not (compare figs 2, 3, 4). Based upon the above observations it is proposed that developing elastica consists of two components that are morphologically and chemically different.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


2015 ◽  
Vol 57 ◽  
pp. 177-187 ◽  
Author(s):  
Jennifer N. Byrum ◽  
William Rodgers

Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
N Miceli ◽  
MF Taviano ◽  
A Trovato ◽  
R De Pasquale ◽  
P Maimone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document