scholarly journals Endoplasmic Reticulum Calcium, Stress, and Cell-to-Cell Adhesion

2014 ◽  
Vol 134 (7) ◽  
pp. 1800-1801 ◽  
Author(s):  
Theodora Mauro
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 476-P
Author(s):  
YUSUKE TAKEDA ◽  
KEIICHIRO MATOBA ◽  
DAIJI KAWANAMI ◽  
YOSUKE NAGAI ◽  
TOMOYO AKAMINE ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1703
Author(s):  
Małgorzata Mrugacz ◽  
Anna Bryl ◽  
Mariusz Falkowski ◽  
Katarzyna Zorena

Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2005
Author(s):  
Irene Vorontsova ◽  
James E. Hall ◽  
Thomas F. Schilling ◽  
Noriaki Nagai ◽  
Yosuke Nakazawa

Aquaporin 0 (AQP0) is the most abundant lens membrane protein, and loss of function in human and animal models leads to cataract formation. AQP0 has several functions in the lens including water transport and adhesion. Since lens optics rely on strict tissue architecture achieved by compact cell-to-cell adhesion between lens fiber cells, understanding how AQP0 contributes to adhesion would shed light on normal lens physiology and pathophysiology. We show in an in vitro adhesion assay that one of two closely related zebrafish Aqp0s, Aqp0b, has strong auto-adhesive properties while Aqp0a does not. The difference appears to be largely due to a single amino acid difference at residue 110 in the extracellular C-loop, which is T in Aqp0a and N in Aqp0b. Similarly, P110 is the key residue required for adhesion in mammalian AQP0, highlighting the importance of residue 110 in AQP0 cell-to-cell adhesion in vertebrate lenses as well as the divergence of adhesive and water permeability functions in zebrafish duplicates.


Hepatology ◽  
2010 ◽  
Vol 52 (1) ◽  
pp. 338-348 ◽  
Author(s):  
Hong-Min Ni ◽  
Catherine J. Baty ◽  
Na Li ◽  
Wen-Xing Ding ◽  
Wentao Gao ◽  
...  

Cell Calcium ◽  
2021 ◽  
pp. 102468
Author(s):  
Elisa Bovo ◽  
Roman Nikolaienko ◽  
Daniel Kahn ◽  
Ellen Cho ◽  
Seth L. Robia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document