scholarly journals Genetic modulation of nephrocalcinosis in mouse models of ectopic mineralization: the Abcc6tm1Jfk and Enpp1asj mutant mice

2014 ◽  
Vol 94 (6) ◽  
pp. 623-632 ◽  
Author(s):  
Qiaoli Li ◽  
David W Chou ◽  
Thea P Price ◽  
John P Sundberg ◽  
Jouni Uitto
2012 ◽  
Vol 44 (6) ◽  
pp. 374-381 ◽  
Author(s):  
Nadia Saadat ◽  
Heidi B. IglayReger ◽  
Martin G. Myers ◽  
Peter Bodary ◽  
Smiti V. Gupta

Leptin, a protein hormone secreted by adipose tissue, plays an important role in regulating energy metabolism and the immune response. Despite similar extremes of adiposity, mutant mouse models, db/db, carrying spontaneous deletion of the active form of the leptin receptor (LEPR-B) intracellular signaling domain, and the s/s, carrying a specific point mutation leading to a dysfunctional LEPR-B-STAT3 signaling pathway, have been shown to have robust differences in glucose homeostasis. This suggests specific effects of leptin, mediated by non-STAT3 LEPR-B pathways. Differences in the LEPR-B signaling pathways in these two LEPR-B mutant mice models are expected to lead to differences in metabolism. In the current study, the hypothesized differences in metabolism were investigated using the metabolomics approach. Proton nuclear magnetic resonance spectroscopy (1HNMR) was conducted on 24 h urine samples in deuterium oxide using a 500 MHz instrument at 25°C. Principle Component Analysis showed clear separation of urine NMR spectra between the groups ( P < 0.05). The CHENOMX metabolite database was used to identify several metabolites that differed between the two mouse models. Significant differences ( P < 0.05) in metabolites associated with the glycine, serine, and homocysteine metabolism were observed. The results demonstrate that the metabolomic profile of db/db and s/s mice are fundamentally different and provide insight into the unique metabolic effects of leptin exerted through non-STAT3 LEPR-B pathways.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 478-478
Author(s):  
Takuro Kameda ◽  
Kotaro Shide ◽  
Masaaki Sekine ◽  
Ayako Kamiunten ◽  
Tomonori Hidaka ◽  
...  

Introduction JAK2V617F (JAK2VF) is the most frequent mutation in myeloproliferative neoplasms (MPN), and its role has been demonstrated in mouse models. Actually, JAK2VF transgenic (JAK2VF Tg) mice generated by us induce lethal MPN (Shide et al. Leukemia 2008). Recently, mutations of epigenetic regulator such as TET2 are also frequently identified in MPN, and several TET2 knock out or knock down (TET2KD) mouse models are generated. We previously analyzed TET2KD mice (Ayu17-449) (Shide et al. Leukemia 2012). TET2KD fetal liver (FL) or bone marrow (BM) cells showed a growth advantage over Wt BM cells, with increased self-renewal capacity of hematopoietic stem cells; however TET2KD mice didn’t develop MPN, and its role in MPN remained unclear. To explore the role of TET2 deficiency in MPN harboring JAK2VF, we examined the cooperative effect, using these mutant mice. Materials and methods (1) Mice and collection of test cells. JAK2VF Tg mice (C57BL/6, Ly5.2) and TET2KD mice (Ayu17-449, C57BL/6, Ly5.2) were used. We crossed them, and collected JAK2Wt-TET2Wt (Wt-Wt), JAK2Wt-TET2KD (Wt-KD), JAK2VF-TET2Wt (VF-Wt), and JAK2VF-TET2KD (VF-KD) FL cells. (2) Non-competitive repopulation assay (NCRA). FL cells (Ly5.2, 1x106 cells) were transplanted into lethally irradiated recipients (Ly5.1) without competitor cells. Recipients were analyzed by complete blood counts, flow cytometry, colony-forming assay, colony-replating assay, pathology at 20-28 weeks post-transplantation, and overall survival. (3) Competitive repopulation assay (CRA) and serial BM transplantation (sBMT). FL cells (Ly5.2, 1x106 cells) were transplanted into lethally irradiated recipients (Ly5.1) with competitor Wt BM cells (Ly5.1, 5x106 cells), and sBMT was performed by 1x106 BM cells of the recipients at every 12 weeks post-transplantation. Recipients which were not selected as the donors were analyzed. (4) Analyses of adult mutant mice. Mice were bred in BDF1 background and analyzed at 20 or more weeks of age, as well as the recipients in NCRA. (5) Statistical analysis. Results were presented as means±S.D. Two-tailed Student’s t-test and log-rank test were used. Result In NCRA, both recipients transplanted with VF-Wt cells and VF-KD cells developed MPN with increase in WBC and Plt, decrease in Hb, fibrosis in BM and spleen, and extramedullary hematopoiesis (EMH) of lung and liver; and the latter developed more severe MPN and died earlier: VF-Wt (n=10) vs. VF-KD (n=10); WBC (x104/µl), 4.2±1.6 vs. 7.3±3.3 (p<0.05); peripheral blood (PB) myeloid cells (%), 59.6±9.7 vs. 71.9±8.2 (p<0.05); liver weight (g), 1.15±0.22 vs. 1.48±0.22 (p<0.01); spleen weight (g), 0.26±0.11 vs. 0.52±0.19 (p<0.01): VF-Wt (n=36) vs. VF-KD (n=30); mean survival time (weeks), 36 vs. 39 (p<0.05). In colony-forming assay, number of CFU-GM was more increased in VF-KD cells than VF-Wt cells: VF-Wt (n=9) vs. VF-KD (n=9); colonies/2x104 BM cells, 107±37 vs. 157±46 (p<0.05). In colony-replating assay, VF-Wt BM cells lost replating capacity by 3rd to 5th passage; VF-KD BM cells retained replating capacity beyond 5th passage: VF-Wt (n=9) vs. VF-KD (n=6); number of colonies in 4th passage, 5.9±6.8 vs. 896±613 (p<0.01). In CRA, all recipients transplanted with VF-Wt cells (n=9) or VF-KD cells (n=9) showed ≥ 70% test cell-derived PB chimerism, and developed MPN with fibrosis and EMH at 12 weeks. In 2nd BMT, 4/9 recipients transplanted with VF-Wt cells showed ≥ 35% PB chimerism at 12 weeks. Six recipients were analyzed at 12-16weeks, and no one (0/6) showed pathological findings of MPN. Whereas, 7/9 recipients transplanted with VF-KD cells showed ≥ 35% PB chimerism. Five recipients were analyzed, and 3/5 developed MPN with fibrosis and EMH: VF-Wt (n=6) vs. VF-KD (n=5); liver weight (g), 1.00±0.12 vs. 1.39±0.15 (p<0.002); spleen weight (g), 0.069±0.019 vs. 0.20±0.097 (p<0.05). In analyses of adult mutant mice, both VF-Wt mice and VF-KD mice developed MPN, and disease severities or colony-replating capacities are similar tendencies as those in transplantation model. Conclusion TET2 deficiency increases severity of MPN harboring JAK2VF. TET2 deficiency enhances disease initiating potential of JAK2VF-MPN stem cells. TET2 deficiency is considered to be critical for both onset and progression of MPN harboring JAK2V617F. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 26 (15) ◽  
pp. 5908-5920 ◽  
Author(s):  
Kenneth T. Kishida ◽  
Charles A. Hoeffer ◽  
Daoying Hu ◽  
Maryland Pao ◽  
Steven M. Holland ◽  
...  

ABSTRACT Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-d-aspartate (NMDA) receptor-dependent signal transduction in the hippocampus, suggesting that NADPH oxidase may be required for NMDA receptor-dependent long-term potentiation (LTP) and hippocampus-dependent memory. Herein we present the first evidence that NADPH oxidase is involved in hippocampal synaptic plasticity and memory. We have found that pharmacological inhibitors of NADPH oxidase block LTP. Moreover, mice that lack the NADPH oxidase proteins gp91 phox and p47 phox , both of which are mouse models of human chronic granulomatous disease (CGD), also lack LTP. We also found that the gp91 phox and p47 phox mutant mice have mild impairments in hippocampus-dependent memory. The gp91 phox mutant mice exhibited a spatial memory deficit in the Morris water maze, and the p47 phox mutant mice exhibited impaired context-dependent fear memory. Taken together, our results are consistent with NADPH oxidase being required for hippocampal synaptic plasticity and memory and are consistent with reports of cognitive dysfunction in patients with CGD.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e89268 ◽  
Author(s):  
Qiaoli Li ◽  
Haitao Guo ◽  
David W. Chou ◽  
Annerose Berndt ◽  
John P. Sundberg ◽  
...  

2021 ◽  
Vol 17 (10) ◽  
pp. e1009994
Author(s):  
Hatim Thaker ◽  
Jie Zhang ◽  
Shin-Ichiro Miyashita ◽  
Vivian Cristofaro ◽  
SunHyun Park ◽  
...  

Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs’ ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.


2003 ◽  
Vol 358 (1433) ◽  
pp. 879-883 ◽  
Author(s):  
Richard L. Proia

Glycosphingolipids are remarkable for their structural complexity and their distinctive patterns that mark different tissues and stages of development. The physiological functions of glycosphingolipids are likely to be profound and are only beginning to emerge. Much of this new information is due to the study of mutant mice lacking specific sets of glycosphingolipids, the topic of this review.


Sign in / Sign up

Export Citation Format

Share Document