scholarly journals The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes

Nature ◽  
2014 ◽  
Vol 510 (7503) ◽  
pp. 84-91 ◽  
Author(s):  
Rachel J. Perry ◽  
Varman T. Samuel ◽  
Kitt F. Petersen ◽  
Gerald I. Shulman
2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Nida Tanataweethum ◽  
Chaeeun Lee ◽  
Allyson Trang ◽  
Franklin Zhong ◽  
Kihwan Kim ◽  
...  

Abstract The development of insulin resistance (IR) in liver is a key of pathophysiologic response in type 2 diabetes. Although insulin resistance impairs its ability to suppress hepatic glucose production, insulin regulation of lipogenesis is maintained (1). Currently available insulin sensitizers are effective at lowering glucose levels, but have significant adverse effect on weight gain due to triglyceride accumulation, which highlights a need to develop new therapeutic treatment options for type 2 diabetes. Brown adipose tissue (BAT) has been studied as a new target for anti-obesity and type 2 diabetes as BAT stimulation increases energy expenditure, reduces adiposity, and improves insulin sensitivity (2). However, the underlying mechanisms are not completely understood. To identify the role of BAT adipokines on hepatic insulin resistance, we developed an insulin resistant liver organ-on-chip model and then perfused primary mouse brown adipocyte conditioned media through the hepatocytes. Our results demonstrate that IR hepatocytes treated with brown adipocyte - conditioned media restores insulin sensitivity and improves glucose metabolism. This was verified by significantly increased expression of Phospho-Akt (Ser473) and glucose production gene markers (G6pc and PEPCK), lowered glucose production, increased glucose uptake, and increased glycogen synthesis in treated hepatocytes over IR group (p < 0.05). Our results also indicate that brown adipocyte - conditioned media treatment has the potential to suppress lipogenesis in hepatic insulin resistance. This was confirmed by significantly reduced expression of a lipogenesis gene marker (SREPB1) and fatty acid uptake in treated hepatocytes over IR group (p < 0.05). Current efforts are focused towards identifying the BAT adipokine via mass spectrometry. We conclude that BAT-derived endocrine factors could be a potential target for new drug discovery for obesity and type 2 diabetes treatment. Reference: (1) Langlet et al. Cell. 2017 Nov;171(4):824-835. (2) Subhadraw et al. Am J Physiol Endocrinol Metlab. 2015 Jun;308(12):E1043-E1055. Nothing to Disclose: NT, CL, AT, FZ, KK, JM, RC, AB


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1758-P
Author(s):  
HUGO MARTIN ◽  
SÉBASTIEN BULLICH ◽  
FABIEN DUCROCQ ◽  
MARION GRALAND ◽  
CLARA OLIVRY ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1746-P
Author(s):  
PATTARA WIROMRAT ◽  
MELANIE CREE-GREEN ◽  
BRYAN C. BERGMAN ◽  
KALIE L. TOMMERDAHL ◽  
AMY BAUMGARTNER ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1617
Author(s):  
Pierluigi Scalia ◽  
Antonio Giordano ◽  
Caroline Martini ◽  
Stephen J. Williams

Insulin receptor (IR) and IR-related signaling defects have been shown to trigger insulin-resistance in insulin-dependent cells and ultimately to give rise to type 2 diabetes in mammalian organisms. IR expression is ubiquitous in mammalian tissues, and its over-expression is also a common finding in cancerous cells. This latter finding has been shown to associate with both a relative and absolute increase in IR isoform-A (IR-A) expression, missing 12 aa in its EC subunit corresponding to exon 11. Since IR-A is a high-affinity transducer of Insulin-like Growth Factor-II (IGF-II) signals, a growth factor is often secreted by cancer cells; such event offers a direct molecular link between IR-A/IR-B increased ratio in insulin resistance states (obesity and type 2 diabetes) and the malignant advantage provided by IGF-II to solid tumors. Nonetheless, recent findings on the biological role of isoforms for cellular signaling components suggest that the preferential expression of IR isoform-A may be part of a wider contextual isoform-expression switch in downstream regulatory factors, potentially enhancing IR-dependent oncogenic effects. The present review focuses on the role of isoform- and paralog-dependent variability in the IR and downstream cellular components playing a potential role in the modulation of the IR-A signaling related to the changes induced by insulin-resistance-linked conditions as well as to their relationship with the benign versus malignant transition in underlying solid tumors.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-52
Author(s):  
A.P. Shumilov ◽  
◽  
M.Yu. Semchenkova ◽  
D.S. Mikhalik ◽  
T.G. Avdeeva ◽  
...  

Vitamin D plays an important role in decreasing the risk of developing type 2 diabetes by influencing calcium metabolism, thereby reducing β-cell dysfunction and preventing insulin resistance. The findings of research works are contradictory enough, although some of them demonstrated an inverse relationship between vitamin D levels and the incidence of type 2 diabetes. The article describes the biological mechanisms of relationships between vitamin D levels and type 2 diabetes, reviews the results of the studies conducted and summarizes the available data. Key words: vitamin D, type 2 diabetes mellitus, insulin resistance


Endocrine ◽  
2021 ◽  
Author(s):  
Lucilla D. Monti ◽  
Camillo Bechi Genzano ◽  
Barbara Fontana ◽  
Elena Galluccio ◽  
Serena Spadoni ◽  
...  

2017 ◽  
Vol 06 (04) ◽  
Author(s):  
Soetkin Milbouw ◽  
Julie Verhaegen ◽  
An Verrijken ◽  
Benedicte Y De Winter ◽  
Luc F Van Gaal ◽  
...  

2021 ◽  
Author(s):  
TAKUMI KITAMOTO ◽  
Taiyi Kuo ◽  
Atsushi Okabe ◽  
Atsushi Kaneda ◽  
Domenico Accili

Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It's unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPARα, and glucocorticoid receptor. We found an enrichment of glucose metabolic genes among those regulated by intergenic and promoter enhancers in a fasting-dependent manner, while lipid genes were enriched among fasting-dependent intron enhancers and fasting-independent enhancer-less introns. Glucose genes also showed a remarkable transcriptional resiliency, i.e., an enrichment of active marks at shared PPARα/FoxO1 regulatory elements when FoxO1 was inactivated. Surprisingly, the main features associated with insulin resistance and hyperglycemia were a ″spreading″ of FoxO1 binding to enhancers, and the emergence of target sites unique to this condition. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document