scholarly journals Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis in the pathophysiology of insulin resistance and type 2 diabetes

2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Chih-Hao Wang ◽  
Yau-Huei Wei
Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 328 ◽  
Author(s):  
Jung Hwan Bae ◽  
Seung II Jo ◽  
Seong Jin Kim ◽  
Jong Min Lee ◽  
Ji Hun Jeong ◽  
...  

Mitochondrial dysfunction has been implicated in the pathogenesis of insulin resistance and type 2 diabetes. Damaged mitochondria DNA (mtDNA) may have a role in regulating hyperglycemia during type 2 diabetes. Circulating cell-free mitochondria DNA (ccf-mtDNA) was found in serum and plasma from patients and has been linked to the prognosis factors in various human diseases. However, the role of ccf-mtDNA in chronic inflammation in type 2 diabetes is unclear. In this study, we hypothesized that the ccf-mtDNA levels are associated with chronic inflammation in patients with type 2 diabetes. The mtDNA levels were elevated in the plasma from patients with type 2 diabetes compared to healthy subjects. The elevated mtDNA levels were associated with interleukin-1 (IL-1)β levels in patients with type 2 diabetes. The mtDNA, from patients with type 2 diabetes, induced absent in melanoma 2 (AIM2) inflammasome-dependent caspase-1 activation and IL-1β and IL-18 secretion in macrophages. Our results suggest that the ccf-mtDNA might contribute to AIM2 inflammasome-mediated chronic inflammation in type 2 diabetes.


2008 ◽  
Vol 158 (5) ◽  
pp. 643-653 ◽  
Author(s):  
H M De Feyter ◽  
N M A van den Broek ◽  
S F E Praet ◽  
K Nicolay ◽  
L J C van Loon ◽  
...  

ObjectiveSeveral lines of evidence support a potential role of skeletal muscle mitochondrial dysfunction in the pathogenesis of insulin resistance and/or type 2 diabetes. However, it remains to be established whether mitochondrial dysfunction represents either cause or consequence of the disease. We examined in vivo skeletal muscle mitochondrial function in early and advanced stages of type 2 diabetes, with the aim to gain insight in the proposed role of mitochondrial dysfunction in the aetiology of insulin resistance and/or type 2 diabetes.MethodsTen long-standing, insulin-treated type 2 diabetes patients, 11 subjects with impaired fasting glucose, impaired glucose tolerance and/or recently diagnosed type 2 diabetes, and 12 healthy, normoglycaemic controls, matched for age and body composition and with low habitual physical activity levels were studied. In vivo mitochondrial function of the vastus lateralis muscle was evaluated from post-exercise phosphocreatine (PCr) recovery kinetics using 31P magnetic resonance spectroscopy (MRS). Intramyocellular lipid (IMCL) content was assessed in the same muscle using single-voxel 1H MRS.ResultsIMCL content tended to be higher in the type 2 diabetes patients when compared with normoglycaemic controls (P=0.06). The31P MRS parameters for mitochondrial function, i.e. PCr and ADP recovery time constants and maximum aerobic capacity, did not differ between groups.ConclusionsThe finding that in vivo skeletal muscle oxidative capacity does not differ between long-standing, insulin-treated type 2 diabetes patients, subjects with early stage type 2 diabetes and sedentary, normoglycaemic controls suggests that mitochondrial dysfunction does not necessarily represent either cause or consequence of insulin resistance and/or type 2 diabetes.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1758-P
Author(s):  
HUGO MARTIN ◽  
SÉBASTIEN BULLICH ◽  
FABIEN DUCROCQ ◽  
MARION GRALAND ◽  
CLARA OLIVRY ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1617
Author(s):  
Pierluigi Scalia ◽  
Antonio Giordano ◽  
Caroline Martini ◽  
Stephen J. Williams

Insulin receptor (IR) and IR-related signaling defects have been shown to trigger insulin-resistance in insulin-dependent cells and ultimately to give rise to type 2 diabetes in mammalian organisms. IR expression is ubiquitous in mammalian tissues, and its over-expression is also a common finding in cancerous cells. This latter finding has been shown to associate with both a relative and absolute increase in IR isoform-A (IR-A) expression, missing 12 aa in its EC subunit corresponding to exon 11. Since IR-A is a high-affinity transducer of Insulin-like Growth Factor-II (IGF-II) signals, a growth factor is often secreted by cancer cells; such event offers a direct molecular link between IR-A/IR-B increased ratio in insulin resistance states (obesity and type 2 diabetes) and the malignant advantage provided by IGF-II to solid tumors. Nonetheless, recent findings on the biological role of isoforms for cellular signaling components suggest that the preferential expression of IR isoform-A may be part of a wider contextual isoform-expression switch in downstream regulatory factors, potentially enhancing IR-dependent oncogenic effects. The present review focuses on the role of isoform- and paralog-dependent variability in the IR and downstream cellular components playing a potential role in the modulation of the IR-A signaling related to the changes induced by insulin-resistance-linked conditions as well as to their relationship with the benign versus malignant transition in underlying solid tumors.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-52
Author(s):  
A.P. Shumilov ◽  
◽  
M.Yu. Semchenkova ◽  
D.S. Mikhalik ◽  
T.G. Avdeeva ◽  
...  

Vitamin D plays an important role in decreasing the risk of developing type 2 diabetes by influencing calcium metabolism, thereby reducing β-cell dysfunction and preventing insulin resistance. The findings of research works are contradictory enough, although some of them demonstrated an inverse relationship between vitamin D levels and the incidence of type 2 diabetes. The article describes the biological mechanisms of relationships between vitamin D levels and type 2 diabetes, reviews the results of the studies conducted and summarizes the available data. Key words: vitamin D, type 2 diabetes mellitus, insulin resistance


2017 ◽  
Vol 06 (04) ◽  
Author(s):  
Soetkin Milbouw ◽  
Julie Verhaegen ◽  
An Verrijken ◽  
Benedicte Y De Winter ◽  
Luc F Van Gaal ◽  
...  

Diabetologia ◽  
2019 ◽  
Vol 62 (10) ◽  
pp. 1891-1900
Author(s):  
Sarah-Naomi James ◽  
Andrew Wong ◽  
Therese Tillin ◽  
Rebecca Hardy ◽  
Nishi Chaturvedi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise E. Lackey ◽  
Felipe C. G. Reis ◽  
Roi Isaac ◽  
Rizaldy C. Zapata ◽  
Dalila El Ouarrat ◽  
...  

Abstract Insulin resistance is a key feature of obesity and type 2 diabetes. PU.1 is a master transcription factor predominantly expressed in macrophages but after HFD feeding PU.1 expression is also significantly increased in adipocytes. We generated adipocyte specific PU.1 knockout mice using adiponectin cre to investigate the role of PU.1 in adipocyte biology, insulin and glucose homeostasis. In HFD-fed obese mice systemic glucose tolerance and insulin sensitivity were improved in PU.1 AKO mice and clamp studies indicated improvements in both adipose and liver insulin sensitivity. At the level of adipose tissue, macrophage infiltration and inflammation was decreased and glucose uptake was increased in PU.1 AKO mice compared with controls. While PU.1 deletion in adipocytes did not affect the gene expression of PPARg itself, we observed increased expression of PPARg target genes in eWAT from HFD fed PU.1 AKO mice compared with controls. Furthermore, we observed decreased phosphorylation at serine 273 in PU.1 AKO mice compared with fl/fl controls, indicating that PPARg is more active when PU.1 expression is reduced in adipocytes. Therefore, in obesity the increased expression of PU.1 in adipocytes modifies the adipocyte PPARg cistrome resulting in impaired glucose tolerance and insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document