scholarly journals Abrupt cooling over the North Atlantic in modern climate models

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Sybren Drijfhout ◽  
Yannick Mary ◽  
Amine Bennabi

Abstract Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models’ varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy.

2015 ◽  
Vol 28 (6) ◽  
pp. 2203-2216 ◽  
Author(s):  
Hoffman H. N. Cheung ◽  
Wen Zhou

Abstract This study assesses the ability of the 25 GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate Ural blocking (UB) and its linkage with the East Asian winter climate [December–February (DJF)] in a historical run (1950/51–2004/05). A Ural blocking index (UBI) is defined as the DJF-mean blocking frequency over 45°–90°E for each winter. Regression analyses suggest that the long-term mean bias of UBI is caused by the long-term mean circulation bias over the North Atlantic. On seasonal time scales, the GCMs simulating a positive bias of UBI are associated with a stronger Atlantic jet stream, as well as stronger westerly momentum fluxes from the North Atlantic to Europe. On synoptic time scales, however, these GCMs tend to be associated with a weaker Siberian high and East Asian trough during the evolution of a UB event. Altogether, there is no apparent linkage between the long-term mean bias of UB and the East Asian winter climate. Further studies are needed to explore the teleconnection between UB and the East Asian winter climate in the GCMs.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2021 ◽  
Author(s):  
Erik T. Smith ◽  
Scott Sheridan

Abstract Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through 2040, all five climate models show CAOs disappearing by 2054 based on current climate percentiles. Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s inability to simulate historical CAOs in these regions.


2015 ◽  
Vol 28 (13) ◽  
pp. 5254-5271 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
Lorenzo M. Polvani

Abstract Recent studies have hypothesized that Arctic amplification, the enhanced warming of the Arctic region compared to the rest of the globe, will cause changes in midlatitude weather over the twenty-first century. This study exploits the recently completed phase 5 of the Coupled Model Intercomparison Project (CMIP5) and examines 27 state-of-the-art climate models to determine if their projected changes in the midlatitude circulation are consistent with the hypothesized impact of Arctic amplification over North America and the North Atlantic. Under the largest future greenhouse forcing (RCP8.5), it is found that every model, in every season, exhibits Arctic amplification by 2100. At the same time, the projected circulation responses are either opposite in sign to those hypothesized or too widely spread among the models to discern any robust change. However, in a few seasons and for some of the circulation metrics examined, correlations are found between the model spread in Arctic amplification and the model spread in the projected circulation changes. Therefore, while the CMIP5 models offer some evidence that future Arctic warming may be able to modulate some aspects of the midlatitude circulation response in some seasons, the analysis herein leads to the conclusion that the net circulation response in the future is unlikely to be determined solely—or even primarily—by Arctic warming according to the sequence of events recently hypothesized.


2009 ◽  
Vol 22 (3) ◽  
pp. 486-498 ◽  
Author(s):  
Willem P. Sijp ◽  
Matthew H. England

Abstract Increasing the value of along-isopycnal diffusivity in a coupled model is shown to lead to enhanced stability of North Atlantic Deep Water (NADW) formation with respect to freshwater (FW) perturbations. This is because the North Atlantic (NA) surface salinity budget is dominated by upward salt fluxes resulting from winter convection for low values of along-isopycnal diffusivity, whereas along-isopycnal diffusion exerts a strong control on NA surface salinity at higher diffusivity values. Shutdown of wintertime convection in response to a FW pulse allows the development of a halocline responsible for the suppression of deep sinking. In contrast to convection, isopycnal salt diffusion proves a more robust mechanism for preventing the formation of a halocline, as surface freshening leads only to a flattening of isopycnals, leaving at least some diffusive removal of anomalous surface FW in place. As a result, multiple equilibria are altogether absent for sufficiently high values of isopycnal diffusivity. Furthermore, the surface salinity budget of the North Pacific is also dominated by along-isopycnal diffusion when diffusivity values are sufficiently high, leading to a breakdown of the permanent halocline there and the associated onset of deep-water formation.


2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2014 ◽  
Vol 27 (2) ◽  
pp. 784-806 ◽  
Author(s):  
Elinor R. Martin ◽  
Chris Thorncroft ◽  
Ben B. B. Booth

Abstract This study uses models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to evaluate and investigate Sahel rainfall multidecadal variability and teleconnections with global sea surface temperatures (SSTs). Multidecadal variability is lower than observed in all historical simulations evaluated. Focus is on teleconnections with North Atlantic SST [Atlantic multidecadal variability (AMV)] as it is more successfully simulated than the Indian Ocean teleconnection. To investigate why some models successfully simulated this teleconnection and others did not, despite having similarly large AMV, two groups of models were selected. Models with large AMV were highlighted as good (or poor) by their ability to simulate relatively high (low) Sahel multidecadal variability and have significant (not significant) correlation between multidecadal Sahel rainfall and an AMV index. Poor models fail to capture the teleconnection between the AMV and Sahel rainfall because the spatial distribution of SST multidecadal variability across the North Atlantic is incorrect. A lack of SST signal in the tropical North Atlantic and Mediterranean reduces the interhemispheric SST gradient and, through circulation changes, the rainfall variability in the Sahel. This pattern was also evident in the control simulations, where SST and Sahel rainfall variability were significantly weaker than historical simulations. Errors in SST variability were suggested to result from a combination of weak wind–evaporation–SST feedbacks, poorly simulated cloud amounts and feedbacks in the stratocumulus regions of the eastern Atlantic, dust–SST–rainfall feedbacks, and sulfate aerosol interactions with clouds. By understanding the deficits and successes of CMIP5 historical simulations, future projections and decadal hindcasts can be examined with additional confidence.


2020 ◽  
Vol 24 (3) ◽  
pp. 1131-1143 ◽  
Author(s):  
Thanh Le ◽  
Deg-Hyo Bae

Abstract. Climate extremes, such as floods and droughts, might have severe economic and societal impacts. Given the high costs associated with these events, developing early-warning systems is of high priority. Evaporation, which is driven by around 50 % of solar energy absorbed at surface of the Earth, is an important indicator of the global water budget, monsoon precipitation, drought monitoring and the hydrological cycle. Here we investigate the response of global evaporation to main modes of interannual climate variability, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). These climate modes may have an influence on temperature, precipitation, soil moisture and wind speed and are likely to have impacts on global evaporation. We utilized data of historical simulations and RCP8.5 (representative concentration pathway) future simulations derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results indicate that ENSO is an important driver of evaporation for many regions, especially the tropical Pacific. The significant IOD influence on evaporation is limited in western tropical Indian Ocean, while NAO is more likely to have impacts on evaporation of the North Atlantic European areas. There is high agreement between models in simulating the effects of climate modes on evaporation of these regions. Land evaporation is found to be less sensitive to considered climate modes compared to oceanic evaporation. The spatial influence of major climate modes on global evaporation is slightly more significant for NAO and the IOD and slightly less significant for ENSO in the 1906–2000 period compared to the 2006–2100 period. This study allows us to obtain insight about the predictability of evaporation and hence, may improve the early-warning systems of climate extremes and water resource management.


2020 ◽  
Author(s):  
Martin Stolpe ◽  
Katarzyna Tokarska ◽  
Sebastian Sippel ◽  
Erich Fischer ◽  
Christopher Smith ◽  
...  

<div>Future global warming estimates have been similar across past assessments, but several climate models of the latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently inconsistent with past assessments. Here we show that projected future warming is correlated with the simulated warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming based on consistency with the observed warming. These findings carry important policy-relevant implications: the observationally-constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is over 16% and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14% and 8% lower by 2090, relative to 1995-2014. Observationally-constrained CMIP6 warming is consistent with previous assessments based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the Paris Agreement target.</div><div> </div><div>Reference: </div><div>Tokarska, K.B.<sup>†</sup>, Stolpe, M.B.<sup>†</sup>, Sippel, S., Fischer, E.M., Smith, C.J., Lehner, F., and Knutti, R. (2020). Past warming trend constrains future warming in CMIP6 models. <em>Science Advances</em>  (accepted).</div><div><sup>†</sup>equal first authors</div>


2017 ◽  
Vol 30 (21) ◽  
pp. 8795-8809 ◽  
Author(s):  
Woosuk Choi ◽  
Chang-Hoi Ho ◽  
Doo-Sun R. Park ◽  
Jinwon Kim ◽  
Johnny C. L. Chan

Prediction of tropical cyclone (TC) activity is essential to better prepare for and mitigate TC-induced disasters. Although many studies have attempted to predict TC activity on various time scales, very few have focused on near-future predictions. Here a decrease in seasonal TC activity over the North Atlantic (NA) for 2016–30 is shown using a track-pattern-based TC prediction model. The TC model is forced by long-term coupled simulations initialized using reanalysis data. Unfavorable conditions for TC development including strengthened vertical wind shear, enhanced low-level anticyclonic flow, and cooled sea surface temperature (SST) over the tropical NA are found in the simulations. Most of the environmental changes are attributable to cooling of the NA basinwide SST (NASST) and more frequent El Niño episodes in the near future. The consistent NASST warming trend in the projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests that natural variability is more dominant than anthropogenic forcing over the NA in the near-future period.


Sign in / Sign up

Export Citation Format

Share Document