scholarly journals The Multidecadal Atlantic SST—Sahel Rainfall Teleconnection in CMIP5 Simulations

2014 ◽  
Vol 27 (2) ◽  
pp. 784-806 ◽  
Author(s):  
Elinor R. Martin ◽  
Chris Thorncroft ◽  
Ben B. B. Booth

Abstract This study uses models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to evaluate and investigate Sahel rainfall multidecadal variability and teleconnections with global sea surface temperatures (SSTs). Multidecadal variability is lower than observed in all historical simulations evaluated. Focus is on teleconnections with North Atlantic SST [Atlantic multidecadal variability (AMV)] as it is more successfully simulated than the Indian Ocean teleconnection. To investigate why some models successfully simulated this teleconnection and others did not, despite having similarly large AMV, two groups of models were selected. Models with large AMV were highlighted as good (or poor) by their ability to simulate relatively high (low) Sahel multidecadal variability and have significant (not significant) correlation between multidecadal Sahel rainfall and an AMV index. Poor models fail to capture the teleconnection between the AMV and Sahel rainfall because the spatial distribution of SST multidecadal variability across the North Atlantic is incorrect. A lack of SST signal in the tropical North Atlantic and Mediterranean reduces the interhemispheric SST gradient and, through circulation changes, the rainfall variability in the Sahel. This pattern was also evident in the control simulations, where SST and Sahel rainfall variability were significantly weaker than historical simulations. Errors in SST variability were suggested to result from a combination of weak wind–evaporation–SST feedbacks, poorly simulated cloud amounts and feedbacks in the stratocumulus regions of the eastern Atlantic, dust–SST–rainfall feedbacks, and sulfate aerosol interactions with clouds. By understanding the deficits and successes of CMIP5 historical simulations, future projections and decadal hindcasts can be examined with additional confidence.

2009 ◽  
Vol 22 (21) ◽  
pp. 5755-5771 ◽  
Author(s):  
M. Biasutti ◽  
A. H. Sobel ◽  
Suzana J. Camargo

Abstract Projections for twenty-first-century changes in summertime Sahel precipitation differ greatly across models in the third Coupled Model Intercomparison Project (CMIP3) dataset and cannot be explained solely in terms of discrepancies in the projected anomalies in global SST. This study shows that an index describing the low-level circulation in the North Atlantic–African region, namely, the strength of the low-level Saharan low, correlates with Sahel rainfall in all models and at the time scales of both interannual and interdecadal natural variability and of the forced centennial trend. An analysis of Sahel interannual variability provides evidence that variations in the Sahara low can be a cause, not just a consequence, of variations in Sahel rainfall and suggests that a better understanding of the sources of model discrepancy in Sahel rainfall predictions might be gained from an analysis of the mechanisms influencing changes in the Sahara low.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2020 ◽  
Vol 24 (3) ◽  
pp. 1131-1143 ◽  
Author(s):  
Thanh Le ◽  
Deg-Hyo Bae

Abstract. Climate extremes, such as floods and droughts, might have severe economic and societal impacts. Given the high costs associated with these events, developing early-warning systems is of high priority. Evaporation, which is driven by around 50 % of solar energy absorbed at surface of the Earth, is an important indicator of the global water budget, monsoon precipitation, drought monitoring and the hydrological cycle. Here we investigate the response of global evaporation to main modes of interannual climate variability, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). These climate modes may have an influence on temperature, precipitation, soil moisture and wind speed and are likely to have impacts on global evaporation. We utilized data of historical simulations and RCP8.5 (representative concentration pathway) future simulations derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results indicate that ENSO is an important driver of evaporation for many regions, especially the tropical Pacific. The significant IOD influence on evaporation is limited in western tropical Indian Ocean, while NAO is more likely to have impacts on evaporation of the North Atlantic European areas. There is high agreement between models in simulating the effects of climate modes on evaporation of these regions. Land evaporation is found to be less sensitive to considered climate modes compared to oceanic evaporation. The spatial influence of major climate modes on global evaporation is slightly more significant for NAO and the IOD and slightly less significant for ENSO in the 1906–2000 period compared to the 2006–2100 period. This study allows us to obtain insight about the predictability of evaporation and hence, may improve the early-warning systems of climate extremes and water resource management.


2012 ◽  
Vol 69 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Edwin K. Schneider ◽  
Meizhu Fan

Abstract In Part I of this study, the atmospheric weather noise for 1951–2000 was inferred from an atmospheric analysis in conjunction with SST-forced AGCM simulations and used to force interactive ensemble coupled GCM simulations of the North Atlantic SST variability. Here, results from those calculations are used in conjunction with a simple stochastically forced coupled model of the decadal time scale North Atlantic tripole SST variability to examine the mechanisms associated with the tripole SST variability. The diagnosed tripole variability is found to be characterized by damped, delayed oscillator dynamics, similar to what has been found by other investigators. However, major differences here, affecting the signs of two of the crucial parameters of the simple model, are that the atmospheric heat flux feedback damps the tripole pattern and that a counterclockwise intergyre gyre-like circulation enhances the tripole pattern. Delayed oscillator dynamics are still obtained because the sign of the dynamically important parameter, proportional to the product of these two parameters, is unchanged. Another difference with regard to the dynamical processes included in the simple model is that the major contribution to the ocean’s dynamical heat flux response to the weather noise wind stress is through a delayed modulation of the mean gyres, rather than from the simultaneous intergyre gyre response. The power spectrum of a revised simple model forced by white noise has a less prominent decadal peak using the parameter values and dynamics diagnosed here than in previous investigations. Decadal time scale retrospective predictions made with this version of the simple model are no better than persistence.


2020 ◽  
Author(s):  
Ralf Hand ◽  
Jürgen Bader ◽  
Daniela Matei ◽  
Rohit Ghosch ◽  
Johann Jungclaus

<p>The question, whether ocean dynamics are relevant for basin-scale North Atlantic decadal temperature variability is subject of ongoing discussions. Here, we analyze a set of simulations with a single climate model, consisting of a 2000-year pre-industrial control experiment, a 100-member historical ensemble, and a 100-member ensemble forced with an incremental CO2 increase by 1%/year. Compared to previous approaches, our setup offers the following advantages: First, the large ensemble size allows to robustly separate internally and externally forced variability and to robustly detect statistical links between different quantities. Second, the availability of different scenarios allows to investigate the role of the background state for drivers of the<br>variability. We find strong evidence that ocean dynamics, particularly ocean heat transport variations, form an important contribution to generate the Atlantic Multidecadal Variability (AMV) in the Max Planck Institute Earth System Model (MPI- ESM). Particularly the Northwest North Atlantic is substantially affected by ocean circulation for the historical and pre-industrial simulations. Anomalies of the Labrador Sea deep ocean density precede a change of the Atlantic Meridional Overturning Circulation (AMOC) and heat advection to the region south of Greenland.<br>Under strong CO2 forcing the AMV-SST regression pattern shows crucial changes: SST variability in the north western part of the North Atlantic is strongly reduced, so that the AMV pattern in this scenario is dominated by the low-latitude branch. We found a connection to changes in the deep water formation, that cause a strong reduction of the mean AMOC and its variability. Consequently, ocean heat transport convergence becomes less important for the SST variability south of Greenland.</p>


2008 ◽  
Vol 21 (14) ◽  
pp. 3471-3486 ◽  
Author(s):  
M. Biasutti ◽  
I. M. Held ◽  
A. H. Sobel ◽  
A. Giannini

Abstract The outlook for Sahel precipitation in coupled simulations of the twenty-first century is very uncertain, with different models disagreeing even on the sign of the trends. Such disagreement is especially surprising in light of the robust response of the same coupled models to the twentieth-century forcings. This study presents a statistical analysis of the preindustrial, twentieth-century and twenty-first-century A1B scenario simulations in the latest Coupled Model Intercomparison Project 3 (CMIP3) dataset; it shows that the relationship that links Sahel rainfall anomalies to tropical sea surface temperature (SST) anomalies at interannual time scales in observations is reproduced by most models, independently of the change in the basic state as the world warms. The same SST–Sahel relationship can be used to predict the simulated twentieth-century changes in Sahel rainfall from each model’s simulation of changes in Indo-Pacific SST and Atlantic SST meridional gradient, although the prediction overestimates the simulated trends. Conversely, such a relationship does not explain the rainfall trend in the twenty-first century in a majority of models. These results are consistent with there being, in most models, a substantial direct positive effect of atmospheric greenhouse gases on Sahel rainfall, not mediated through SST.


2018 ◽  
Vol 11 (9) ◽  
pp. 3681-3712 ◽  
Author(s):  
Christopher D. Roberts ◽  
Retish Senan ◽  
Franco Molteni ◽  
Souhail Boussetta ◽  
Michael Mayer ◽  
...  

Abstract. This paper presents atmosphere-only and coupled climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal ensemble experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6). These experiments are used to evaluate the sensitivity of major biases in the atmosphere, ocean, and cryosphere to changes in atmosphere and ocean resolution. All configurations successfully reproduce the observed long-term trends in global mean surface temperature. Furthermore, following an adjustment to account for drift in the subsurface ocean, coupled configurations of ECMWF-IFS realistically reproduce observation-based estimates of ocean heat content change since 1950. Climatological surface biases in ECMWF-IFS are relatively insensitive to an increase in atmospheric resolution from  ∼ 50 to  ∼ 25 km. However, increasing the horizontal resolution of the atmosphere while maintaining the same vertical resolution enhances the magnitude of a cold bias in the lower stratosphere. In coupled configurations, there is a strong sensitivity to an increase in ocean model resolution from 1 to 0.25°. However, this sensitivity to ocean resolution takes many years to fully manifest and is less apparent in the first year of integration. This result has implications for the ECMWF coupled model development strategy that typically relies on the analysis of biases in short ( < 1 year) ensemble (re)forecast data sets. The impacts of increased ocean resolution are particularly evident in the North Atlantic and Arctic, where they are associated with an improved Atlantic meridional overturning circulation, increased meridional ocean heat transport, and more realistic sea-ice cover. In the tropical Pacific, increased ocean resolution is associated with improvements to the magnitude and asymmetry of El Niño–Southern Oscillation (ENSO) variability and better representation of non-linear sea surface temperature (SST)–radiation feedbacks during warm events. However, increased ocean model resolution also increases the magnitude of a warm bias in the Southern Ocean. Finally, there is tentative evidence that both ocean coupling and increased atmospheric resolution can improve teleconnections between tropical Pacific rainfall and geopotential height anomalies in the North Atlantic.


2012 ◽  
Vol 25 (15) ◽  
pp. 5404-5415 ◽  
Author(s):  
Chunzai Wang ◽  
Shenfu Dong ◽  
Amato T. Evan ◽  
Gregory R. Foltz ◽  
Sang-Ki Lee

Abstract Most studies of African dust and North Atlantic climate have been limited to the short time period since the satellite era (1980 onward), precluding the examination of their relationship on longer time scales. Here a new dust dataset with the record extending back to the 1950s is used to show a multidecadal covariability of North Atlantic SST and aerosol, Sahel rainfall, and Atlantic hurricanes. When the North Atlantic Ocean was cold from the late 1960s to the early 1990s, the Sahel received less rainfall and the tropical North Atlantic experienced a high concentration of dust. The opposite was true when the North Atlantic Ocean was warm before the late 1960s and after the early 1990s. This suggests a novel mechanism for North Atlantic SST variability—a positive feedback between North Atlantic SST, African dust, and Sahel rainfall on multidecadal time scales. That is, a warm (cold) North Atlantic Ocean produces a wet (dry) condition in the Sahel and thus leads to low (high) concentration of dust in the tropical North Atlantic, which in turn warms (cools) the North Atlantic Ocean. An implication of this study is that coupled climate models need to be able to simulate this aerosol-related feedback in order to correctly simulate climate variability in the North Atlantic. Additionally, it is found that dust in the tropical North Atlantic varies inversely with the number of Atlantic hurricanes on multidecadal time scales because of the multidecadal variability of both direct and indirect influences of dust on vertical wind shear in the hurricane main development region.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kyung-Sook Yun ◽  
June-Yi Lee ◽  
Axel Timmermann ◽  
Karl Stein ◽  
Malte F. Stuecker ◽  
...  

AbstractIntensification of El Niño-Southern Oscillation (ENSO)-rainfall variability in response to global warming is a robust feature across Coupled Model Intercomparison Project (CMIP) iterations, regardless of a lack of robust projected changes in ENSO-sea-surface temperature (SST) variability. Previous studies attributed this intensification to an increase in mean SST and moisture convergence over the central-to-eastern Pacific, without explicitly considering underlying nonlinear SST–rainfall relationship changes. Here, by analyzing changes of the tropical SST–rainfall relationship of CMIP6 models, we present a mechanism linking the mean SST rise to amplifying ENSO–rainfall variability. We show that the slope of the SST–rainfall function over Niño3 region becomes steeper in a warmer climate, ~42.1% increase in 2050–2099 relative to 1950–1999, due to the increase in Clausius–Clapeyron-driven moisture sensitivity, ~16.2%, and dynamic contributions, ~25.9%. A theoretical reconstruction of ENSO–rainfall variability further supports this mechanism. Our results imply ENSO’s hydrological impacts increase nonlinearly in response to global warming.


2021 ◽  
Author(s):  
Shipeng Zhang ◽  
Philip Stier ◽  
Guy Dagan ◽  
Minghuai Wang

&lt;p&gt;Sahel rainfall experienced significant multidecadal variability over the twentieth century. Previous work have proposed several drivers to explain the severe drought and the subsequent recovery of Sahel rainfall in the past century, including anthropogenic aerosols, GHGs, and internal variabilities. However, the attribution remained ambiguous. Sahel summertime monsoon has close teleconnections with North Atlantic sea surface temperature (NASST) variability, which has been proven to be affected by aerosols. Therefore, changes in regional aerosols emission can potentially drive multidecadal Sahel rainfall variability.&lt;/p&gt;&lt;p&gt;Here we use ensembles of state-of-the-art global climate models (the CESM-large ensemble and CMIP6 models) and observational datasets to demonstrate that anthropogenic aerosols have significant impacts on twentieth-century Sahel rainfall multidecadal variability through modifying NASST. Aerosol-induced multidecadal variations of downward solar fluxes over the North Atlantic Ocean cause NASST variability during the 20&lt;sup&gt;th&lt;/sup&gt; century, altering the strength of the Hadley cell and the ITCZ position, therefore, dynamically linking aerosol effects to Sahel rainfall variability. While the observed linear trend of NASST might still be affected by a mix of various external and internal drivers, our results suggest that NASST variability is most likely caused by aerosol-induced changes in radiative fluxes rather than changes in ocean circulations, and that anthropogenic aerosols can explain most of the detrended Sahel rainfall variability. CMIP6 models further suggest that aerosol-cloud interactions contributed more to the variability than aerosol-radiation interactions. These findings highlight the importance of accurate representation of regional aerosol radiative effects for the simulation of Sahel rainfall variability.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document