Tide turns against corn ethanol

Nature ◽  
2010 ◽  
Author(s):  
Jeff Tollefson
Keyword(s):  
Author(s):  
Andrew Schmitz ◽  
Charles B. Moss ◽  
Troy G. Schmitz

AbstractThe COVID-19 crisis created large economic losses for corn, ethanol, gasoline, and oil producers and refineries both in the United States and worldwide. We extend the theory used by Schmitz, A., C. B. Moss, and T. G. Schmitz. 2007. “Ethanol: No Free Lunch.” Journal of Agricultural & Food Industrial Organization 5 (2): 1–28 as a basis for empirical estimation of the effect of COVID-19. We estimate, within a welfare economic cost-benefit framework that, at a minimum, the producer cost in the United States for these four sectors totals $176.8 billion for 2020. For U.S. oil producers alone, the cost was $151 billion. When world oil is added, the costs are much higher, at $1055.8 billion. The total oil producer cost is $1.03 trillion, which is roughly 40 times the effect on U.S. corn, ethanol, and gasoline producers, and refineries. If the assumed unemployment effects from COVID-19 are taken into account, the total effect, including both producers and unemployed workers, is $212.2 billion, bringing the world total to $1266.9 billion.


Cellulose ◽  
2015 ◽  
Vol 23 (1) ◽  
pp. 307-321 ◽  
Author(s):  
Zhouyang Xiang ◽  
Renil Anthony ◽  
Wu Lan ◽  
Troy Runge
Keyword(s):  

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 30
Author(s):  
Pietro Sica ◽  
Laysa Maciel Lewandowski Meira Prado ◽  
Pedro Granja ◽  
Elias Miguel de Carvalho ◽  
Eduardo de Castro Mattos ◽  
...  

Despite being considered renewable, corn (Zea mays) ethanol still generates much debate over the use of fossil fuels in its production and is considered less sustainable than sugarcane (Saccharum spp.) ethanol. In Brazil, corn ethanol is starting to be produced in the Center-West and is expected to increase with the RenovaBio, a promising policy for biofuels adoption. In this context, energy cane (Saccharum spp.) is a biomass crop with high yields that can provide bagasse to supply the energy demand of the corn ethanol industry and provide juice with about 10% sugar content. However, the effects of introducing its juice in the production process are unknown. For these reasons, the objective of this study was to assess the effects of adding energy cane juice in corn ethanol production. Energy cane juice brings several advantages: (i) It provides sugars that can reduce by almost 50% the amount of corn and enzymes used, (ii) reduces the amount of water needed for ethanol production, and (iii) increases significantly the fermentation efficiency from 86.4% to 90.8% by providing minerals that support yeast growth. Therefore, energy cane can be integrated into the corn ethanol production process, making the fermentation more efficient and the production systems more sustainable.


Sign in / Sign up

Export Citation Format

Share Document