scholarly journals Indirubin-3′-oxime stimulates chondrocyte maturation and longitudinal bone growth via activation of the Wnt/β-catenin pathway

2019 ◽  
Vol 51 (9) ◽  
pp. 1-10
Author(s):  
Sehee Choi ◽  
Pu-Hyeon Cha ◽  
Hyun-Yi Kim ◽  
Kang-Yell Choi

Abstract Researchers have shown increased interest in determining what stimulates height. Currently, many children undergo precocious puberty, resulting in short stature due to premature closure of the growth plate. However, the current approach for height enhancement is limited to growth hormone treatment, which often results in side effects and clinical failure and is costly. Although recent studies have indicated the importance of paracrine signals in the growth plate for longitudinal bone growth, height-stimulating agents targeting the signaling pathways involved in growth plate maturation remain unavailable in the clinic. The Wnt/β-catenin pathway plays a major role in the maturation of growth plate chondrocytes. In this study, by using an ex vivo tibial culture system, we identified indirubin-3′-oxime (I3O) as a compound capable of enhancing longitudinal bone growth. I3O promoted chondrocyte proliferation and differentiation via activation of the Wnt/β-catenin pathway in vitro. Intraperitoneal injection of I3O in adolescent mice increased growth plate height along with incremental chondrocyte maturation. I3O promoted tibial growth without significant adverse effects on bone thickness and articular cartilage. Therefore, I3O could be a potential therapeutic agent for increasing height in children with growth retardation.

2005 ◽  
Vol 186 (1) ◽  
pp. 241-249 ◽  
Author(s):  
Ola Nilsson ◽  
Robert D Mitchum ◽  
Lenneke Schrier ◽  
Sandra P Ferns ◽  
Kevin M Barnes ◽  
...  

The overall body size of vertebrates is primarily determined by longitudinal bone growth at the growth plate. With age, the growth plate undergoes programmed senescence, causing longitudinal bone growth to slow and eventually cease. Indirect evidence suggests that growth plate senescence occurs because stem-like cells in the growth plate resting zone have a finite proliferative capacity that is gradually exhausted. Similar limits on replication have been observed when many types of animal cells are placed in cell culture, an effect known as the Hayflick phenomenon. However, we found that the number of population doublings of rabbit resting zone chondrocytes in culture did not depend on the age of the animal from which the cells were harvested, suggesting that the mechanisms limiting replicative capacity of growth plate chondrocytes in vivo are distinct from those in vitro. We also observed that the level of DNA methylation in resting zone chondrocytes decreased with age in vivo. This loss of methylation appeared to occur specifically with the slow proliferation of resting zone chondrocytes in vivo and was not observed with the rapid proliferation of proliferative zone chondrocytes in vivo (i.e. the level of DNA methylation did not change from the resting zone to the hypertrophic zone), with proliferation of chondrocytes in vitro, or with growth of the liver in vivo. Thus, the overall level of DNA methylation decreases during growth plate senescence. This finding is consistent with the hypothesis that the mechanism limiting replication of growth plate chondrocytes in vivo involves loss of DNA methylation and, thus, loss of DNA methylation might be a fundamental biological mechanism that limits longitudinal bone growth in mammals, thereby determining the overall adult size of the organism.


1998 ◽  
Vol 111 (6) ◽  
pp. 803-813
Author(s):  
P.R. Romano ◽  
J. Wang ◽  
R.J. O'Keefe ◽  
J.E. Puzas ◽  
R.N. Rosier ◽  
...  

We have previously identified and partially cloned Band 17, a gene expressed in growth plate chondrocytes transiting from proliferation to hypertrophy. We now rename this gene HiPER1, Histidine Phosphatase of the Endoplasmic Reticulum-1, based on the results reported here. HiPER1 encodes two proteins of 318 (HiPER1(318)) and 449 (HiPER1(449)) amino acids, which are 20–21% identical to a group of yeast acid phosphatases that are in the histidine phosphatase family. HiPER1(449) is significantly more abundant than HiPER1(318), correlating with the abundance of the alternatively spliced messages encoding HiPER449 and HiPER318. Anti-HiPER1 antibodies detect two proteins of 53 and 55 kDa in growth plate chondrocytes that are absent in articular chondrocytes. We confirm that the 53 and 55 kDa proteins are HiPER1(449) by heterologous expression of the HiPER1(449) coding sequence in chick embryo fibroblasts. The 53 and 55 kDa proteins are glycosylated forms of HiPER1(449), as N-glycosidase F digestion reduces these proteins to 48 kDa, the predicted size of HiPER1(449) without the N-terminal signal sequence. Immunocytochemistry demonstrates that HiPER1(449) is found in chondrocytes maturing from proliferation to hypertrophy, but is not detectable in resting zone, deep hypertrophic zone or articular chondrocytes, a distribution that is consistent with the message distribution. HiPER1(449) was predicted to localize to the lumen of endoplasmic reticulum by an N-terminal signal sequence and by the C-terminal sequence Ala-Asp-Glu-Leu, which closely matches the consensus signal for ER retention, Lys-Asp-Glu-Leu. We confirm this prediction by demonstrating colocalization of HiPER1(449) with the ER protein HSP47 using dual-label immunofluorescence. PTHrP, a peptide that prevents hypertrophy in chondrocytes, suppressed HiPER1 and HiPER1(449) expression in vitro, an observation that further supports a role for HiPER1 in chondrocyte maturation. The yeast phosphatase homology, localization to the endoplasmic reticulum and pattern of expression suggest that HiPER1 represents a previously unrecognized intracellular pathway, involved in differentiation of chondrocytes.


2007 ◽  
Vol 282 (46) ◽  
pp. 33698-33706 ◽  
Author(s):  
Shufang Wu ◽  
Janna K. Flint ◽  
Geoffrey Rezvani ◽  
Francesco De Luca

NF-κB is a group of transcription factors involved in cell proliferation, differentiation, and apoptosis. Mice deficient in the NF-κB subunits p50 and p52 have retarded growth, suggesting that NF-κB is involved in bone growth. Yet, it is not clear whether the reduced bone growth of these mice depends on the lack of NF-κB activity in growth plate chondrocytes. Using cultured rat metatarsal bones and isolated growth plate chondrocytes, we studied the effects of two NF-κB inhibitors (pyrrolidine dithiocarbamate (PDTC) or BAY11-7082 (BAY)), p65 short interference RNA (siRNA), and of the overexpression of p65 on chondrocyte proliferation, differentiation, and apoptosis. To further define the underlying mechanisms, we studied the functional interaction between NF-κB p65 and BMP-2 in chondrocytes. PDTC and BAY suppressed metatarsal linear growth. Such growth inhibition resulted from decreased chondrocyte proliferation and differentiation and from increased chondrocyte apoptosis. In cultured chondrocytes, the inhibition of NF-κB p65 activation (by PDTC and BAY) and expression (by p65 siRNA) led to the same findings observed in cultured metatarsal bones. In contrast, overexpression of p65 in cultured chondrocytes induced chondrocyte proliferation and differentiation and prevented apoptosis. Although PDTC, BAY, and p65 siRNA reduced the expression of BMP-2 in cultured growth plate chondrocytes, the overexpression of p65 increased it. The addition of Noggin, a BMP-2 antagonist, neutralized the stimulatory effects of p65 on chondrocyte proliferation and differentiation, as well as its anti-apoptotic effect. In conclusion, our findings indicate that NF-κB p65 expressed in growth plate chondrocytes facilitates growth plate chondrogenesis and longitudinal bone growth by inducing BMP-2 expression and activity.


2019 ◽  
Vol 2 (2) ◽  
pp. e201800254 ◽  
Author(s):  
Sehee Choi ◽  
Hyun-Yi Kim ◽  
Pu-Hyeon Cha ◽  
Seol Hwa Seo ◽  
Chulho Lee ◽  
...  

Longitudinal bone growth ceases with growth plate senescence during puberty. However, the molecular mechanisms of this phenomenon are largely unexplored. Here, we examined Wnt-responsive genes before and after growth plate senescence and found that CXXC finger protein 5 (CXXC5), a negative regulator of the Wnt/β-catenin pathway, was gradually elevated with reduction of Wnt/β-catenin signaling during senescent changes of rodent growth plate. Cxxc5−/− mice demonstrated delayed growth plate senescence and tibial elongation. As CXXC5 functions by interacting with dishevelled (DVL), we sought to identify small molecules capable of disrupting this interaction. In vitro screening assay monitoring CXXC5–DVL interaction revealed that several indirubin analogs were effective antagonists of this interaction. A functionally improved indirubin derivative, KY19382, elongated tibial length through delayed senescence and further activation of the growth plate in adolescent mice. Collectively, our findings reveal an important role for CXXC5 as a suppressor of longitudinal bone growth involving growth plate activity.


2012 ◽  
Vol 302 (11) ◽  
pp. E1381-E1389 ◽  
Author(s):  
A. E. Börjesson ◽  
S. H. Windahl ◽  
E. Karimian ◽  
E. E. Eriksson ◽  
M. K. Lagerquist ◽  
...  

High estradiol levels in late puberty induce growth plate closure and thereby cessation of growth in humans. In mice, the growth plates do not fuse after sexual maturation, but old mice display reduced longitudinal bone growth and high-dose estradiol treatment induces growth plate closure. Estrogen receptor (ER)-α stimulates gene transcription via two activation functions (AFs), AF-1 and AF-2. To evaluate the role of ERα and its AF-1 for age-dependent reduction in longitudinal bone growth and growth plate closure, female mice with inactivation of ERα (ERα−/−) or ERαAF-1 (ERαAF-10) were evaluated. Old (16- to 19-mo-old) female ERα−/− mice showed continued substantial longitudinal bone growth, resulting in longer bones (tibia: +8.3%, P < 0.01) associated with increased growth plate height (+18%, P < 0.05) compared with wild-type (WT) mice. In contrast, the longitudinal bone growth ceased in old ERαAF-10 mice (tibia: −4.9%, P < 0.01). Importantly, the proximal tibial growth plates were closed in all old ERαAF-10 mice while they were open in all WT mice. Growth plate closure was associated with a significantly altered balance between chondrocyte proliferation and apoptosis in the growth plate. In conclusion, old female ERα−/− mice display a prolonged and enhanced longitudinal bone growth associated with increased growth plate height, resembling the growth phenotype of patients with inactivating mutations in ERα or aromatase. In contrast, ERαAF-1 deletion results in a hyperactive ERα, altering the chondrocyte proliferation/apoptosis balance, leading to growth plate closure. This suggests that growth plate closure is induced by functions of ERα that do not require AF-1 and that ERαAF-1 opposes growth plate closure.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2625
Author(s):  
Ok-Kyung Kim ◽  
Jeong moon Yun ◽  
Minhee Lee ◽  
Soo-Jeung Park ◽  
Dakyung Kim ◽  
...  

The aim of this study was to investigate the effects of administration of a mixture of Humulus japonicus (MH) on longitudinal bone growth in normal Sprague Dawley (SD) rats. We measured the femur and tibia length, growth plate area, proliferation of chondrocytes, and expression of insulin-like growth factor-1 (IGF-I) and IGF binding protein-3 (IGFBP-3), and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) phosphorylation after dietary administration of MH in SD rats for four weeks. The nose–tail length gain and length of femur and tibia increased significantly in the group that received MH for a period of four weeks. We performed H&E staining and Bromodeoxyuridine/5-Bromo-2′-Deoxyuridine (BrdU) staining to examine the effect of dietary administration of MH on the growth plate and the proliferation of chondrocytes and found that MH stimulated the proliferation of chondrocytes and contributed to increased growth plate height during the process of longitudinal bone growth. In addition, serum levels of IGF-1 and IGFBP-3 and expression of IGF-1 and IGFBP-3 mRNAs in the liver and bone were increased, and phosphorylation of JAK2/STAT5 in the liver was increased in the MH groups. Based on these results, we suggest that the effect of MH on longitudinal bone growth is mediated by increased JAK2/STAT5-induced IGF-1 production.


2012 ◽  
Vol 77 (3) ◽  
pp. 180-187 ◽  
Author(s):  
Paola Fernandez-Vojvodich ◽  
Karin Palmblad ◽  
Elham Karimian ◽  
Ulf Andersson ◽  
Lars Sävendahl

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hye Kyung Kim ◽  
Myung-Gyou Kim ◽  
Kang-Hyun Leem

The aim of this study was to compare the effectiveness of velvet antler (VA) from different sections for promoting longitudinal bone growth in growing rats. VA was divided into upper (VAU), middle (VAM), and basal sections (VAB). An in vivo study was performed to examine the effect on longitudinal bone growth in adolescent rats. In addition, in vitro osteogenic activities were examined using osteoblastic MG-63 cells. VA promoted longitudinal bone growth and height of the growth plate in adolescent rats. Bone morphogenetic protein-2 (BMP-2) in growth plate of VA group was highly expressed compared with control. The anabolic effect of VA on bone was further supported by in vitro study. VA enhanced the proliferation, differentiation, and mineralization of MG-63 cells. The mRNA expressions of osteogenic genes such as collagen, alkaline phosphatase, and osteocalcin were increased by VA treatment. These effects of in vivo and in vitro study were decreased from upper to basal sections of VA. In conclusion, VA treatment promotes longitudinal bone growth in growing rats through enhanced BMP-2 expression, osteogenic activities, and bone matrix gene expressions. In addition, present study provides evidence for the regional differences in the effectiveness of velvet antler for longitudinal bone growth.


2019 ◽  
Vol 12 (576) ◽  
pp. eaaw4847 ◽  
Author(s):  
Nianchao Qian ◽  
Atsuhiko Ichimura ◽  
Daisuke Takei ◽  
Reiko Sakaguchi ◽  
Akihiro Kitani ◽  
...  

During endochondral ossification of long bones, the proliferation and differentiation of chondrocytes cause them to be arranged into layered structures constituting the epiphyseal growth plate, where they secrete the cartilage matrix that is subsequently converted into trabecular bone. Ca2+ signaling has been implicated in chondrogenesis in vitro. Through fluorometric imaging of bone slices from embryonic mice, we demonstrated that live growth plate chondrocytes generated small, cell-autonomous Ca2+ fluctuations that were associated with weak and intermittent Ca2+ influx. Several genes encoding Ca2+-permeable channels were expressed in growth plate chondrocytes, but only pharmacological inhibitors of transient receptor potential cation channel subfamily M member 7 (TRPM7) reduced the spontaneous Ca2+ fluctuations. The TRPM7-mediated Ca2+ influx was likely activated downstream of basal phospholipase C activity and was potentiated upon cell hyperpolarization induced by big-conductance Ca2+-dependent K+ channels. Bones from embryos in which Trpm7 was conditionally knocked out during ex vivo culture exhibited reduced outgrowth and displayed histological abnormalities accompanied by insufficient autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the growth plate. The link between TRPM7-mediated Ca2+ fluctuations and CaMKII-dependent chondrogenesis was further supported by experiments with chondrocyte-specific Trpm7 knockout mice. Thus, growth plate chondrocytes generate spontaneous, TRPM7-mediated Ca2+ fluctuations that promote self-maturation and bone development.


Sign in / Sign up

Export Citation Format

Share Document