Protein synthesis signaling in skeletal muscle is refractory to whey protein ingestion during a severe energy deficit evoked by prolonged exercise and caloric restriction

2018 ◽  
Vol 43 (4) ◽  
pp. 872-882 ◽  
Author(s):  
Marcos Martin-Rincon ◽  
Ismael Perez-Suarez ◽  
Alberto Pérez-López ◽  
Jesús Gustavo Ponce-González ◽  
David Morales-Alamo ◽  
...  
2014 ◽  
Vol 306 (8) ◽  
pp. E989-E997 ◽  
Author(s):  
José L. Areta ◽  
Louise M. Burke ◽  
Donny M. Camera ◽  
Daniel W. D. West ◽  
Siobhan Crawshay ◽  
...  

The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. In young men ( n = 8) and women ( n = 7), we determined protein signaling and resting postabsorptive MPS during energy balance [EB; 45 kcal·kg fat-free mass (FFM)−1·day−1] and after 5 days of ED (30 kcal·kg FFM−1·day−1) as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Postabsorptive rates of MPS were 27% lower in ED than EB ( P < 0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ∼16 and ∼34% above resting EB ( P < 0.02). p70 S6K Thr389 phosphorylation increased above EB only with combined exercise and protein intake (∼2–7 fold, P < 0.05). In conclusion, short-term ED reduces postabsorptive MPS; however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short-term ED and could in the long term preserve muscle mass.


2018 ◽  
Vol 24 ◽  
pp. 127-133 ◽  
Author(s):  
Francina J. Dijk ◽  
Miriam van Dijk ◽  
Stéphane Walrand ◽  
Luc J.C. van Loon ◽  
Klaske van Norren ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2824 ◽  
Author(s):  
Marcos Martin-Rincon ◽  
Alberto Pérez-López ◽  
David Morales-Alamo ◽  
Ismael Perez-Suarez ◽  
Pedro de Pablos-Velasco ◽  
...  

The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 641 ◽  
Author(s):  
Ana P. Pinto ◽  
Tales S. Vieira ◽  
Bruno B. Marafon ◽  
Gabriela Batitucci ◽  
Elisa M. B. Cabrera ◽  
...  

The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.


2012 ◽  
Vol 37 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Michelle M. Farnfield ◽  
Leigh Breen ◽  
Kate A. Carey ◽  
Andrew Garnham ◽  
David Cameron-Smith

Purpose: To investigate the impact of whey protein ingestion and resistance exercise training on the phosphorylation of mRNA translational signalling proteins in the skeletal muscle of young and old men. Methods: Sixteen healthy young (aged 18–25 years) and 15 healthy older men (aged 60–75 years) completed 12 weeks of resistance exercise and were randomly assigned to consume a whey protein (WPI) or placebo drink after each session. Muscle biopsies were collected before and 2 h after an acute exercise bout at the beginning and the end of training. Results: All subjects significantly increased strength after following strength training. Phosphorylation of mTOR was significantly greater in the WPI groups compared with placebo for both younger and older subjects. Phosphorylation of p70S6K, eIF4G, and 4EBP1 was greater for older subjects consuming WPI. Phosphorylation of rpS6, eIF4G, and 4EBP1 tended to increase in the younger subjects that had consumed WPI. Post-training, younger subjects demonstrated a similar pattern of mTOR phosphorylation as seen pre-training. In contrast, the initial heightened phosphorylation of mTOR, p70S6K, rpS6, and eIF4G in older muscle to combined resistance exercise and WPI ingestion became less pronounced after repeated training sessions. Conclusions: In the untrained state, resistance exercise coupled with WPI increases the phosphorylation of proteins involved in mRNA translation compared with exercise alone. Post-training, WPI- and exercise-induced protein phosphorylation was reduced in older men, but not in younger men. Thus, strategies to induce hypertrophy should utilize protein and resistance training concurrently. Further investigations should delineate interventions that will maintain sensitivity to anabolic stimuli in older populations.


Sign in / Sign up

Export Citation Format

Share Document