scholarly journals Pruning chemicals from the green building landscape

2019 ◽  
Vol 30 (2) ◽  
pp. 236-246
Author(s):  
Lisa J. Goodwin Robbins ◽  
Kathryn M. Rodgers ◽  
Bill Walsh ◽  
Rachelle Ain ◽  
Robin E. Dodson

Abstract Green building design has substantially minimized environmental impacts by reducing energy consumption compared with traditional buildings. Yet, it is not uncommon for a green building to meet the highest criteria for energy efficiency and be built with materials that contain chemicals hazardous to occupant health. Because of this discrepancy in achieving holistic sustainability, the architecture/engineering/construction (AEC) industry has never been more interested in occupant health and well-being than it is today. At the same time, numerous scientific studies have documented exposures to and associated health effects of chemicals used in building materials. Opportunities to translate environmental health research so that it is useful to the AEC community exist across the landscape of healthier buildings. For example, research can be conducted to prioritize building material and chemical combinations to demonstrate how green building certification systems, government building codes, and the building products marketplace can increase energy performance while also addressing the greatest chemical exposures and health impacts. In order for scientific research to be used to create and support healthier environments, researchers should design and translate their research with this landscape in mind and should consider experts in the AEC industry as ambassadors for change. We provide key examples of how scientists have promoted healthy building practices and highlight additional research opportunities.

2020 ◽  
pp. 195-195
Author(s):  
Norbert Harmathy

The construction sector as one of the highest carbon emitters in the World has an international initiative for Green House Gas reduction. Green building certifications demonstrate performance, efficiency and economy in the constuction sector. The motivation of the research was to investigate whether Green certified buildings which fulfill the minimum energy standards do demonstrate high energy performance compared to energy efficient buildings and renewable systems. The hypothesis was to investigate that renewable energy source application could contribute to higher performance, against a typical efficient HVAC system (usually applied in commercial buildings) and a building aiming for Green certification, concerning mandatory energy efficiency requirement. The research scope was to investigate and evaluate various HVAC solutions using triple-criteria evaluation method for decarbonization: energy performance, carbon footprint and operation cost to formulate systematic solutions in the design phase of projects for wide audience with preferable and applicable results.


Author(s):  
Andrew Thatcher ◽  
Karen Milner

In this article, we explore the individual and organizational outcomes associated with a move from traditional buildings to three green buildings. Our findings revealed that high-level organizational measures were not notably affected by the move. Changes were, however, seen in physical well-being and perceived environmental comfort. The primary drivers were air quality and lighting. The need to consider human factors/ergonomics in green building design has been recognized by the Green Building Council of South Africa as an industry standard and as the starting point for the development of an interior design rating tool. Longer-term impacts of green buildings on organizationally relevant indicators still need to be established.


Author(s):  
D. P. Kothari

The green building design aims to minimize the need for the non-renewable energy of these resources, optimize their sustainability and maximize their conservation, recycling and usage. The use of effective building materials and construction techniques is maximized. Architectural bioclimatic technology will also optimize on-site usage of sources and sinks. It requires only minimum electricity to fuel itself and efficient appliances to meet its lighting, air-conditioning and other needs. Green buildings architecture optimizes the use of renewable energies and efficient waste and water management methods to create practical and hygienic working conditions for indoor environments. Materials such as chemical, physical and mechanical material properties and an appropriate specification are the fundamental elements of construction design and responsible for the mechanical strength of the design. The construction of green buildings is also the first step in choosing and utilizing eco-friendly materials with or better characteristics than traditional building materials. Based on the practical, technical and financial requirements, construction materials are usually selected. But, given that sustainable development has been a core issue in recent decades, building industry that is directly or indirectly responsible for a substantial share of annual environmental destruction, by pursuing environmentally sound constructions and buildings should take responsibility for contributing to sustainable growth. The quickest way for manufacturers to start integrating environmental design practices into buildings would be the diligent procurement of eco-friendly sustainable construction materials, including options for new material uses, recycling and reusing, organic product creation and green resource use. This paper aims to show how green building materials will help reduce the impact on the atmosphere and create a cleaner building that can be healthy for the occupant or our environment. In the sustainable progress of a nation, the choice of building materials that have reduced environmental burdens is helpful.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


2013 ◽  
Vol 357-360 ◽  
pp. 1070-1073
Author(s):  
Bao Zhu Sheng

Building material is the base of civil engineering construction, in the history of thousands of years of development, building materials also gradually change and change, and is closely related to the progress of human civilization and the development of science and technology.Green building materials has the vital significance to the construction of a conservation-oriented society and sustainable development, in accordance with China's social development.This paper introduces the importance of the development of green building materials,analyzes some factors influencing the development of green building materials in China,and discusses the development tendency of green building materials in China.


2011 ◽  
Vol 71-78 ◽  
pp. 655-658
Author(s):  
Rong Qin

There are six basic control items, land saving, energy saving, water saving, material saving, indoor environment and operation, among which, only material saving are related to structure design. We followed the green building design concept and the control items list in those standards during structure design of one of the residential area in Sino-Singapore Tianjin Eco-city, which consist of 15~18-story residential building connected to a large underground garage, as is shown below.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


2016 ◽  
Vol 11 (39) ◽  
pp. 656-664
Author(s):  
Mohamed Ibrahim ◽  
samara abd elhamed

Sign in / Sign up

Export Citation Format

Share Document