Mediation by hormone concentrations on the associations between repeated measures of phthalate mixture exposure and timing of delivery

Author(s):  
Amber L. Cathey ◽  
Max T. Aung ◽  
Deborah J. Watkins ◽  
Zaira Y. Rosario ◽  
Carmen M. Vélez Vega ◽  
...  
Keyword(s):  
2019 ◽  
Vol 28 (1) ◽  
pp. 114-124
Author(s):  
Linda W. Norrix ◽  
Julie Thein ◽  
David Velenovsky

Purpose Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method Sixteen adults participated. Electrophysiological measures were obtained using simultaneous recordings by the Vivosonic and Intelligent Hearing Systems for subjects in 2 relaxed conditions and 4 active motor conditions. Three averaging times were used for the relaxed states (1, 1.5, and 3 min) and for the active states (1.5, 3, and 6 min). Repeated-measures analyses of variance were used to examine RN levels as a function of noise reduction strategy (i.e., KWA, AR) and averaging time. Results Lower RN levels were obtained using KWA than AR in both the relaxed and active motor states. Thus, KWA was more effective than was AR under the conditions examined in this study. Using KWA, approximately 3 min of averaging was needed in the relaxed condition to obtain an average RN level of 0.025 μV. In contrast, in the active motor conditions, approximately 6 min of averaging was required using KWA. Mean RN levels of 0.025 μV were not attained using AR. Conclusions When patients are not physiologically quiet, low RN levels are more likely to be obtained and more efficiently obtained using KWA than AR. However, even when using KWA, in active motor states, 6 min of averaging or more may be required to obtain threshold responses. Averaging time needed and whether a low RN level can be attained will depend on the level of motor activity exhibited by the patient.


2020 ◽  
Vol 29 (2) ◽  
pp. 188-198
Author(s):  
Cynthia G. Fowler ◽  
Margaret Dallapiazza ◽  
Kathleen Talbot Hadsell

Purpose Motion sickness (MS) is a common condition that affects millions of individuals. Although the condition is common and can be debilitating, little research has focused on the vestibular function associated with susceptibility to MS. One causal theory of MS is an asymmetry of vestibular function within or between ears. The purposes of this study, therefore, were (a) to determine if the vestibular system (oculomotor and caloric tests) in videonystagmography (VNG) is associated with susceptibility to MS and (b) to determine if these tests support the theory of an asymmetry between ears associated with MS susceptibility. Method VNG was used to measure oculomotor and caloric responses. Fifty young adults were recruited; 50 completed the oculomotor tests, and 31 completed the four caloric irrigations. MS susceptibility was evaluated with the Motion Sickness Susceptibility Questionnaire–Short Form; in this study, percent susceptibility ranged from 0% to 100% in the participants. Participants were divided into three susceptibility groups (Low, Mid, and High). Repeated-measures analyses of variance and pairwise comparisons determined significance among the groups on the VNG test results. Results Oculomotor test results revealed no significant differences among the MS susceptibility groups. Caloric stimuli elicited responses that were correlated positively with susceptibility to MS. Slow-phase velocity was slowest in the Low MS group compared to the Mid and High groups. There was no significant asymmetry between ears in any of the groups. Conclusions MS susceptibility was significantly and positively correlated with caloric slow-phase velocity. Although asymmetries between ears are purported to be associated with MS, asymmetries were not evident. Susceptibility to MS may contribute to interindividual variability of caloric responses within the normal range.


2020 ◽  
Vol 29 (3) ◽  
pp. 391-403
Author(s):  
Dania Rishiq ◽  
Ashley Harkrider ◽  
Cary Springer ◽  
Mark Hedrick

Purpose The main purpose of this study was to evaluate aging effects on the predominantly subcortical (brainstem) encoding of the second-formant frequency transition, an essential acoustic cue for perceiving place of articulation. Method Synthetic consonant–vowel syllables varying in second-formant onset frequency (i.e., /ba/, /da/, and /ga/ stimuli) were used to elicit speech-evoked auditory brainstem responses (speech-ABRs) in 16 young adults ( M age = 21 years) and 11 older adults ( M age = 59 years). Repeated-measures mixed-model analyses of variance were performed on the latencies and amplitudes of the speech-ABR peaks. Fixed factors were phoneme (repeated measures on three levels: /b/ vs. /d/ vs. /g/) and age (two levels: young vs. older). Results Speech-ABR differences were observed between the two groups (young vs. older adults). Specifically, older listeners showed generalized amplitude reductions for onset and major peaks. Significant Phoneme × Group interactions were not observed. Conclusions Results showed aging effects in speech-ABR amplitudes that may reflect diminished subcortical encoding of consonants in older listeners. These aging effects were not phoneme dependent as observed using the statistical methods of this study.


2020 ◽  
Vol 63 (12) ◽  
pp. 3991-3999
Author(s):  
Benjamin van der Woerd ◽  
Min Wu ◽  
Vijay Parsa ◽  
Philip C. Doyle ◽  
Kevin Fung

Objectives This study aimed to evaluate the fidelity and accuracy of a smartphone microphone and recording environment on acoustic measurements of voice. Method A prospective cohort proof-of-concept study. Two sets of prerecorded samples (a) sustained vowels (/a/) and (b) Rainbow Passage sentence were played for recording via the internal iPhone microphone and the Blue Yeti USB microphone in two recording environments: a sound-treated booth and quiet office setting. Recordings were presented using a calibrated mannequin speaker with a fixed signal intensity (69 dBA), at a fixed distance (15 in.). Each set of recordings (iPhone—audio booth, Blue Yeti—audio booth, iPhone—office, and Blue Yeti—office), was time-windowed to ensure the same signal was evaluated for each condition. Acoustic measures of voice including fundamental frequency ( f o ), jitter, shimmer, harmonic-to-noise ratio (HNR), and cepstral peak prominence (CPP), were generated using a widely used analysis program (Praat Version 6.0.50). The data gathered were compared using a repeated measures analysis of variance. Two separate data sets were used. The set of vowel samples included both pathologic ( n = 10) and normal ( n = 10), male ( n = 5) and female ( n = 15) speakers. The set of sentence stimuli ranged in perceived voice quality from normal to severely disordered with an equal number of male ( n = 12) and female ( n = 12) speakers evaluated. Results The vowel analyses indicated that the jitter, shimmer, HNR, and CPP were significantly different based on microphone choice and shimmer, HNR, and CPP were significantly different based on the recording environment. Analysis of sentences revealed a statistically significant impact of recording environment and microphone type on HNR and CPP. While statistically significant, the differences across the experimental conditions for a subset of the acoustic measures (viz., jitter and CPP) have shown differences that fell within their respective normative ranges. Conclusions Both microphone and recording setting resulted in significant differences across several acoustic measurements. However, a subset of the acoustic measures that were statistically significant across the recording conditions showed small overall differences that are unlikely to have clinical significance in interpretation. For these acoustic measures, the present data suggest that, although a sound-treated setting is ideal for voice sample collection, a smartphone microphone can capture acceptable recordings for acoustic signal analysis.


2020 ◽  
Vol 34 (3) ◽  
pp. 192-201
Author(s):  
Melanie M. van der Ploeg ◽  
Jos F. Brosschot ◽  
Markus Quirin ◽  
Richard D. Lane ◽  
Bart Verkuil

Abstract. Stress-related stimuli may be presented outside of awareness and may ultimately influence health by causing repetitive increases in physiological parameters, such as blood pressure (BP). In this study, we aimed to corroborate previous studies that demonstrated BP effects of subliminally presented stress-related stimuli. This would add evidence to the hypothesis that unconscious manifestations of stress can affect somatic health. Additionally, we suggest that these findings may be extended by measuring affective changes relating to these physiological changes, using measures for self-reported and implicit positive and negative affectivity. Using a repeated measures between-subject design, we presented either the prime word “angry” ( n = 26) or “relax” ( n = 28) subliminally (17 ms) for 100 trials to a student sample and measured systolic and diastolic BP, heart rate (HR), and affect. The “angry” prime, compared to the “relax” prime, did not affect any of the outcome variables. During the priming task, a higher level of implicit negative affect (INA) was associated with a lower systolic BP and diastolic BP. No association was found with HR. Self-reported affect and implicit positive affect were not related to the cardiovascular (CV) activity. In sum, anger and relax primes elicited similar CV activity patterns, but implicit measures of affect may provide a new method to examine the relationship between (unconscious) stress and health.


2020 ◽  
Vol 36 (1) ◽  
pp. 196-206 ◽  
Author(s):  
Almut Rudolph ◽  
Michela Schröder-Abé ◽  
Astrid Schütz

Abstract. In five studies, we evaluated the psychometric properties of a revised German version of the State Self-Esteem Scale (SSES; Heatherton & Polivy, 1991 ). In Study 1, the results of a confirmatory factor analysis on the original scale revealed poor model fit and poor construct validity in a student sample that resembled those in the literature; thus, a revised 15-item version was developed (i.e., the SSES-R) and thoroughly validated. Study 2 showed a valid three-factor structure (Performance, Social, and Appearance) and good internal consistency of the SSES-R. Correlations between subscales of trait and state SE empirically supported the scale’s construct validity. Temporal stability and intrapersonal sensitivity of the scale to naturally occurring events were investigated in Study 3. Intrapersonal sensitivity of the scale to experimentally induced changes in state SE was uncovered in Study 4 via social feedback (acceptance vs. rejection) and performance feedback (positive vs. negative). In Study 5, the scale’s interpersonal sensitivity was confirmed by comparing depressed and healthy individuals. Finally, the usefulness of the SSES-R was demonstrated by assessing SE instability as calculated from repeated measures of state SE.


2008 ◽  
Vol 24 (3) ◽  
pp. 165-173 ◽  
Author(s):  
Niko Kohls ◽  
Harald Walach

Validation studies of standard scales in the particular sample that one is studying are essential for accurate conclusions. We investigated the differences in answering patterns of the Brief-Symptom-Inventory (BSI), Transpersonal Trust Scale (TPV), Sense of Coherence Questionnaire (SOC), and a Social Support Scale (F-SoZu) for a matched sample of spiritually practicing (SP) and nonpracticing (NSP) individuals at two measurement points (t1, t2). Applying a sample matching procedure based on propensity scores, we selected two sociodemographically balanced subsamples of N = 120 out of a total sample of N = 431. Employing repeated measures ANOVAs, we found an intersample difference in means only for TPV and an intrasample difference for F-SoZu. Additionally, a group × time interaction effect was found for TPV. While Cronbach’s α was acceptable and comparable for both samples, a significantly lower test-rest-reliability for the BSI was found in the SP sample (rSP = .62; rNSP = .78). Thus, when researching the effects of spiritual practice, one should not only look at differences in means but also consider time stability. We recommend propensity score matching as an alternative for randomization in variables that defy experimental manipulation such as spirituality.


Methodology ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 157-164
Author(s):  
Karl Schweizer

Probability-based and measurement-related hypotheses for confirmatory factor analysis of repeated-measures data are investigated. Such hypotheses comprise precise assumptions concerning the relationships among the true components associated with the levels of the design or the items of the measure. Measurement-related hypotheses concentrate on the assumed processes, as, for example, transformation and memory processes, and represent treatment-dependent differences in processing. In contrast, probability-based hypotheses provide the opportunity to consider probabilities as outcome predictions that summarize the effects of various influences. The prediction of performance guided by inexact cues serves as an example. In the empirical part of this paper probability-based and measurement-related hypotheses are applied to working-memory data. Latent variables according to both hypotheses contribute to a good model fit. The best model fit is achieved for the model including latent variables that represented serial cognitive processing and performance according to inexact cues in combination with a latent variable for subsidiary processes.


Methodology ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Manuel C. Voelkle ◽  
Patrick E. McKnight

The use of latent curve models (LCMs) has increased almost exponentially during the last decade. Oftentimes, researchers regard LCM as a “new” method to analyze change with little attention paid to the fact that the technique was originally introduced as an “alternative to standard repeated measures ANOVA and first-order auto-regressive methods” (Meredith & Tisak, 1990, p. 107). In the first part of the paper, this close relationship is reviewed, and it is demonstrated how “traditional” methods, such as the repeated measures ANOVA, and MANOVA, can be formulated as LCMs. Given that latent curve modeling is essentially a large-sample technique, compared to “traditional” finite-sample approaches, the second part of the paper addresses the question to what degree the more flexible LCMs can actually replace some of the older tests by means of a Monte-Carlo simulation. In addition, a structural equation modeling alternative to Mauchly’s (1940) test of sphericity is explored. Although “traditional” methods may be expressed as special cases of more general LCMs, we found the equivalence holds only asymptotically. For practical purposes, however, no approach always outperformed the other alternatives in terms of power and type I error, so the best method to be used depends on the situation. We provide detailed recommendations of when to use which method.


Sign in / Sign up

Export Citation Format

Share Document