scholarly journals BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib

Leukemia ◽  
2021 ◽  
Author(s):  
H. Yesid Estupiñán ◽  
Qing Wang ◽  
Anna Berglöf ◽  
Gerard C. P. Schaafsma ◽  
Yuye Shi ◽  
...  

AbstractIrreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1103
Author(s):  
Philipp von Hundelshausen ◽  
Wolfgang Siess

Bruton tyrosine kinase (Btk) is expressed in B-lymphocytes, myeloid cells and platelets, and Btk-inhibitors (BTKi) are used to treat patients with B-cell malignancies, developed against autoimmune diseases, have been proposed as novel antithrombotic drugs, and been tested in patients with severe COVID-19. However, mild bleeding is frequent in patients with B-cell malignancies treated with the irreversible BTKi ibrutinib and the recently approved 2nd generation BTKi acalabrutinib, zanubrutinib and tirabrutinib, and also in volunteers receiving in a phase-1 study the novel irreversible BTKi BI-705564. In contrast, no bleeding has been reported in clinical trials of other BTKi. These include the brain-penetrant irreversible tolebrutinib and evobrutinib (against multiple sclerosis), the irreversible branebrutinib, the reversible BMS-986142 and fenebrutinib (targeting rheumatoid arthritis and lupus erythematodes), and the reversible covalent rilzabrutinib (against pemphigus and immune thrombocytopenia). Remibrutinib, a novel highly selective covalent BTKi, is currently in clinical studies of autoimmune dermatological disorders. This review describes twelve BTKi approved or in clinical trials. By focusing on their pharmacological properties, targeted disease, bleeding side effects and actions on platelets it attempts to clarify the mechanisms underlying bleeding. Specific platelet function tests in blood might help to estimate the probability of bleeding of newly developed BTKi.


2021 ◽  
Vol 118 (10) ◽  
pp. e2016265118
Author(s):  
Mahmoud S. Ahmed ◽  
Ping Wang ◽  
Ngoc Uyen Nhi Nguyen ◽  
Yuji Nakada ◽  
Ivan Menendez-Montes ◽  
...  

Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.


Blood ◽  
2018 ◽  
Vol 131 (24) ◽  
pp. 2605-2616 ◽  
Author(s):  
Kristina Busygina ◽  
Janina Jamasbi ◽  
Till Seiler ◽  
Hans Deckmyn ◽  
Christian Weber ◽  
...  

Key Points Btk inhibitors specifically block platelet thrombus formation on atherosclerotic plaque but spare physiologic hemostasis. Irreversible Btk inactivation in platelets incapable of enzyme resynthesis allows low intermittent drug dosing for antiatherothrombosis.


2019 ◽  
Vol 3 (23) ◽  
pp. 4021-4033 ◽  
Author(s):  
Luise Goldmann ◽  
Rundan Duan ◽  
Thorsten Kragh ◽  
Georg Wittmann ◽  
Christian Weber ◽  
...  

Key Points Six different BTKi’s blocked platelet activation in blood after FcγRIIA stimulation by cross-linking, anti-CD9 antibodies, or HIT serum. Established oral irreversible and novel reversible BTKi’s may offer a new option to treat HIT.


Sign in / Sign up

Export Citation Format

Share Document