scholarly journals Sex-specific impact of prenatal androgens on social brain default mode subsystems

2018 ◽  
Vol 25 (9) ◽  
pp. 2175-2188 ◽  
Author(s):  
Michael V. Lombardo ◽  
Bonnie Auyeung ◽  
Tiziano Pramparo ◽  
Angélique Quartier ◽  
Jérémie Courraud ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 374
Author(s):  
Tomoyo Morita ◽  
Minoru Asada ◽  
Eiichi Naito

Self-consciousness is a personality trait associated with an individual’s concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of “concern about being evaluated by others”, which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.


2018 ◽  
Author(s):  
Michael V. Lombardo ◽  
Bonnie Auyeung ◽  
Tiziano Pramparo ◽  
Angélique Quartier ◽  
Jérémie Courraud ◽  
...  

AbstractMany early-onset neurodevelopmental conditions such as autism affect males more frequently than females and affect corresponding domains such as social cognition, social-communication, language, emotion, and reward. Testosterone is well-known for its role as a sex-related biological mechanism and affects these conditions and domains of functioning. Developmentally, testosterone may sex-differentially impact early fetal brain development by influencing early neuronal development and synaptic mechanisms behind cortical circuit formation, particularly for circuits that later develop specialized roles in such cognitive domains. Here we find that variation in fetal testosterone (FT) exerts sex-specific effects on later adolescent functional connectivity between social brain default mode network (DMN) subsystems. Increased FT is associated with dampening of functional connectivity between DMN subsystems in adolescent males, but has no effect in females. To isolate specific prenatal neurobiological mechanisms behind this effect, we examined changes in gene expression identified following a treatment with a potent androgen, dihydrotestosterone (DHT) in an in-vitro model of human neural stem cell (hNSC). We previously showed that DHT-dysregulates genes enriched with known syndromic causes for autism and intellectual disability. DHT dysregulates genes in hNSCs involved in early neurodevelopmental processes such as neurogenesis, cell differentiation, regionalization, and pattern specification. A significant number of these DHT-dysregulated genes shows spatial expression patterns in the adult brain that highly correspond to the spatial layout of the cortical midline DMN subsystem. These DMN-related and DHT-affected genes (e.g., MEF2C) are involved in a number of synaptic processes, many of which impact excitation/inhibition imbalance. Focusing on MEF2C, we find replicable upregulation of expression after DHT treatment as well as dysregulated expression in induced pluripotent stem cells and neurons of individuals with autism. This work highlights sex-specific prenatal androgen influence on social brain DMN circuitry and autism-related mechanisms and suggests that such influence may impact early neurodevelopmental processes (e.g., neurogenesis, cell differentiation) and later developing synaptic processes.


2020 ◽  
Author(s):  
Yin Wang ◽  
Athanasia Metoki ◽  
Yunman Xia ◽  
Yinyin Zang ◽  
Yong He ◽  
...  

AbstractHumans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network of brain regions but how these regions connect and interact is not well understood. Here we leveraged large-scale multimodal neuroimaging data to elucidate the connectome-level organization and brain-wide mechanisms of mentalizing processing. Key features of the mentalizing connectome have been delineated in exquisite detail and its relationship with the default mode network has been extensively scrutinized. Our study demonstrates that mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and unique hierarchical functional architecture, which make it distinguishable from the default mode network and other social brain networks.


Author(s):  
Rogier B. Mars ◽  
Franz-Xaver Neubert ◽  
MaryAnn P. Noonan ◽  
Jerome Sallet ◽  
Ivan Toni ◽  
...  

2019 ◽  
Vol 28 (4) ◽  
pp. 834-842
Author(s):  
Harini Vasudevan ◽  
Hari Prakash Palaniswamy ◽  
Ramaswamy Balakrishnan

Purpose The main purpose of the study is to explore the auditory selective attention abilities (using event-related potentials) and the neuronal oscillatory activity in the default mode network sites (using electroencephalogram [EEG]) in individuals with tinnitus. Method Auditory selective attention was measured using P300, and the resting state EEG was assessed using the default mode function analysis. Ten individuals with continuous and bothersome tinnitus along with 10 age- and gender-matched control participants underwent event-related potential testing and 5 min of EEG recording (at wakeful rest). Results Individuals with tinnitus were observed to have larger N1 and P3 amplitudes along with prolonged P3 latency. The default mode function analysis revealed no significant oscillatory differences between the groups. Conclusion The current study shows changes in both the early sensory and late cognitive components of auditory processing. The change in the P3 component is suggestive of selective auditory attention deficit, and the sensory component (N1) suggests an altered bottom-up processing in individuals with tinnitus.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


2012 ◽  
Author(s):  
Rosemarie Kluetsch ◽  
Tomas Ros ◽  
Jean Theberge ◽  
Paul Frewen ◽  
Christian Schmahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document