scholarly journals Fine tuning of the DNAM-1/TIGIT/ligand axis in mucosal T cells and its dysregulation in pediatric inflammatory bowel diseases (IBD)

2019 ◽  
Vol 12 (6) ◽  
pp. 1358-1369
Author(s):  
S. Battella ◽  
S. Oliva ◽  
L. Franchitti ◽  
R. La Scaleia ◽  
A. Soriani ◽  
...  
2021 ◽  
Vol 22 (6) ◽  
pp. 3061
Author(s):  
Naschla Gasaly ◽  
Marcela A. Hermoso ◽  
Martín Gotteland

This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.


Author(s):  
Yonghong Yang ◽  
Cui Zhang ◽  
Dehuai Jing ◽  
Heng He ◽  
Xiaoyu Li ◽  
...  

Abstract Background Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn’s disease (CD), are chronic inflammatory disorders. As is well known, interferon regulatory factor (IRF) 5 is closely associated with the pathogenesis of various inflammatory diseases. But the exact role of IRF5 in IBD remains unclear. Methods In this study, we detected IRF5 expression in peripheral blood mononuclear cells (PBMCs) and inflamed mucosa from IBD patients by immunohistochemistry, western blot, and quantitative real-time polymerase chain reaction. Peripheral blood CD4+ T cells were stimulated with inflammatory cytokines and transfected by lentivirus. Results In active IBD patients, the expression of IRF5 in PBMCs and inflamed colonic tissues was obviously increased and significantly associated with disease activity. Ectopic overexpression of IRF5 could promote the differentiation of IBD CD4+ T cells into Th1 and Th17 cells by regulating T-bet and RAR related orphan receptor C, whereas knockdown of IRF5 had the opposite effects. Tumor necrosis factor (TNF)-α upregulated expression of IRF5 in CD4+ T cells, but anti-TNF treatment with infliximab could markedly reduce IRF5 expression in CD4+ T cells and intestinal mucosa of CD patients. Conclusion Our study reveals a novel mechanism that IRF5 levels are correlated with disease activity in IBD and might function as a possible marker for the management of IBD via regulating Th1 and Th17 immune responses and cytokine production.


Author(s):  
Matthew Luzentales-Simpson ◽  
Yvonne C. F. Pang ◽  
Ada Zhang ◽  
James A. Sousa ◽  
Laura M. Sly

Inflammatory bowel diseases (IBD), encompassing ulcerative colitis (UC), and Crohn’s disease (CD), are a group of disorders characterized by chronic, relapsing, and remitting, or progressive inflammation along the gastrointestinal tract. IBD is accompanied by massive infiltration of circulating leukocytes into the intestinal mucosa. Leukocytes such as neutrophils, monocytes, and T-cells are recruited to the affected site, exacerbating inflammation and causing tissue damage. Current treatments used to block inflammation in IBD include aminosalicylates, corticosteroids, immunosuppressants, and biologics. The first successful biologic, which revolutionized IBD treatment, targeted the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα). Infliximab, adalimumab, and other anti-TNF antibodies neutralize TNFα, preventing interactions with its receptors and reducing the inflammatory response. However, up to 40% of people with IBD become unresponsive to anti-TNFα therapy. Thus, more recent biologics have been designed to block leukocyte trafficking to the inflamed intestine by targeting integrins and adhesins. For example, natalizumab targets the α4 chain of integrin heterodimers, α4β1 and α4β7, on leukocytes. However, binding of α4β1 is associated with increased risk for developing progressive multifocal leukoencephalopathy, an often-fatal disease, and thus, it is not used to treat IBD. To target leukocyte infiltration without this life-threatening complication, vedolizumab was developed. Vedolizumab specifically targets the α4β7 integrin and was approved to treat IBD based on the presumption that it would block T-cell recruitment to the intestine. Though vedolizumab is an effective treatment for IBD, some studies suggest that it may not block T-cell recruitment to the intestine and its mechanism(s) of action remain unclear. Vedolizumab may reduce inflammation by blocking recruitment of T-cells, or pro-inflammatory monocytes and dendritic cells to the intestine, and/or vedolizumab may lead to changes in the programming of innate and acquired immune cells dampening down inflammation.


2019 ◽  
Vol 13 (Supplement_1) ◽  
pp. S130-S130
Author(s):  
A Fantou ◽  
A Abidi ◽  
L Delbos ◽  
J Podevin ◽  
A Jarry ◽  
...  

2010 ◽  
Vol 118 (12) ◽  
pp. 707-715 ◽  
Author(s):  
Giovanni Monteleone ◽  
Flavio Caprioli

Gut inflammation occurring in patients with IBDs (inflammatory bowel diseases) is associated with exaggerated and poorly controlled T-cell-mediated immune responses, which are directed against normal components of the gut flora. T-cells accumulate in the inflamed gut of IBD patients as a result of multiple mechanisms, including enhanced recruitment of cells from the bloodstream, sustained cell cycling and diminished susceptibility of cells to undergo apoptosis. Activated T-cells produce huge amounts of cytokines, which contribute to amplify and sustain the ongoing mucosal inflammation. Strategies aimed at interfering with T-cell accumulation and/or function in the gut have been employed with clinical success in patients with IBDs. In the present article, we review the available results showing that T-cell-directed therapies are useful to dampen the tissue-damaging immune response in IBDs.


2009 ◽  
Vol 15 (6) ◽  
pp. 926-934 ◽  
Author(s):  
Takanori Kanai ◽  
Yasuhiro Nemoto ◽  
Takayuki Tomita ◽  
Teruji Totsuka ◽  
Mamoru Watanabe ◽  
...  

2011 ◽  
Vol 17 (1) ◽  
pp. 160-170 ◽  
Author(s):  
Gilles Boschetti ◽  
Stéphane Nancey ◽  
Fatima Sardi ◽  
Xavier Roblin ◽  
Bernard Flourié ◽  
...  

2010 ◽  
Vol 138 (5) ◽  
pp. S-743
Author(s):  
Gilles Boschetti ◽  
Fatima Sardi ◽  
Xavier Roblin ◽  
Bernard Flourie ◽  
Dominique Kaiserlian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document