scholarly journals Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation

2020 ◽  
Vol 14 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Aida Iljazovic ◽  
Urmi Roy ◽  
Eric J. C. Gálvez ◽  
Till R. Lesker ◽  
Bei Zhao ◽  
...  

AbstractDiverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


2016 ◽  
Vol 12 (7) ◽  
pp. 637-646 ◽  
Author(s):  
Pittaya Chaikham ◽  
Arunee Apichartsrangkoon ◽  
Srivilai Worametrachanon ◽  
Tom Van de Wiele

Abstract The prospect of Lactobacillus casei 01 and pasteurized purple-rice drinks on modulating colon microbiome by using a simulator of the human intestinal microbial ecosystem was investigated. Accordingly, L. casei 01 alone and with pasteurized purple-rice drink were administered into the proximal and distal colons. In consequence, some colon bacteria and their metabolic activities were examined. The results showed that upon modulating the colon microbiota by L. casei 01 alone with pasteurized germinated-purple-rice drink in the distal colon, acetate and propionate (short-chain fatty acids) were equivalently elevated but other treatments performed differently. Based on the profile of colon microbiota, most treatments stimulated the highest number of lactobacilli followed by bifidobacteria, while other undesirable bacteria were moderately diminished. In overall, larger gelatinized starch in the rice drinks enabled by pasteurization triggered off better modulating impact than by pressurization.


2019 ◽  
Vol 20 (4) ◽  
pp. 461-472 ◽  
Author(s):  
Marc Schoeler ◽  
Robert Caesar

Abstract The gut microbiota is a central regulator of host metabolism. The composition and function of the gut microbiota is dynamic and affected by diet properties such as the amount and composition of lipids. Hence, dietary lipids may influence host physiology through interaction with the gut microbiota. Lipids affect the gut microbiota both as substrates for bacterial metabolic processes, and by inhibiting bacterial growth by toxic influence. The gut microbiota has been shown to affect lipid metabolism and lipid levels in blood and tissues, both in mice and humans. Furthermore, diseases linked to dyslipidemia, such as non-alcoholic liver disease and atherosclerosis, are associated with changes in gut microbiota profile. The influence of the gut microbiota on host lipid metabolism may be mediated through metabolites produced by the gut microbiota such as short-chain fatty acids, secondary bile acids and trimethylamine and by pro-inflammatory bacterially derived factors such as lipopolysaccharide. Here we will review the association between gut microbiota, dietary lipids and lipid metabolism


Author(s):  
Paulina Markowiak-Kopeć ◽  
Katarzyna Śliżewska

The relationship between diet and the diversity and function of the intestinal microbiomeand its importance for human health is currently the subject of many studies. The type and proportionof microorganisms found in the intestines can determine the energy balance of the host. Intestinalmicroorganisms perform many important functions, one of which is participation in metabolicprocesses, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids).These acids represent the main carbon flow from the diet to the host microbiome. Maintainingintestinal balance is necessary to maintain the host’s normal health and prevent many diseases.The results of many studies confirm the beneficial effect of probiotic microorganisms on the balanceof the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is tosummarize what is known on the effects of probiotics on the production of short-chain fatty acidsby gut microbes. In addition, the mechanism of formation and properties of these metabolites isdiscussed and verified test results confirming the effectiveness of probiotics in human nutrition bymodulating SCFAs production by intestinal microbiome is presented.


Diabetes Care ◽  
2021 ◽  
pp. dc202257
Author(s):  
Noel T. Mueller ◽  
Moira K. Differding ◽  
Mingyu Zhang ◽  
Nisa M. Maruthur ◽  
Stephen P. Juraschek ◽  
...  

2021 ◽  
Author(s):  
Velma T Aho ◽  
Madelyn Crawford Houser ◽  
Pedro AB Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of stool SCFAs, inflammation, and zonulin. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are PD- and sex-dependent. Alterations in microbiota-host interactions and links between intestinal inflammation and reduced SCFA levels and earlier PD onset warrant further investigation.


2020 ◽  
Author(s):  
Velma T Aho ◽  
Madelyn Crawford Houser ◽  
Pedro AB Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background: Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD.Methods: Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota.Results: Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of stool SCFAs, inflammation, and zonulin. Certain relationships differed between patients and controls and by sex.Conclusions: Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are PD- and sex-dependent. Alterations in microbiota-host interactions and links between intestinal inflammation and reduced SCFA levels and earlier PD onset warrant further investigation.


2020 ◽  
Vol 2 (9) ◽  
pp. 840-848 ◽  
Author(s):  
James Frampton ◽  
Kevin G. Murphy ◽  
Gary Frost ◽  
Edward S. Chambers

Sign in / Sign up

Export Citation Format

Share Document